Mitochondrial dysfunction in cellular senescence
DOI:
https://doi.org/10.31489/2025feb3/5-17Keywords:
cellular senescence, mitochondria, oxidative stress, mitophagy, microRNAs, age-associated diseases, cancer, Alzheimer's disease, cardiovascular diseasesAbstract
Cellular senescence is a complex process characterized by cell cycle arrest and loss of cell division ability. While the process of aging is the result of numerous molecular mechanisms, mitochondria play a pivotal role in its progression. Mitochondrial dysfunction, indicated by impaired respiratory capacity and a diminished energy status of the cell, is frequently accompanied by an augmented production of free oxygen radicals, resulting in oxidative stress. This condition not only accelerates cellular aging, but also its progression. A substantial body of research has substantiated the association between mitochondrial dysfunction and cellular senescence, underscoring the significance of mitochondria as a target for anti-aging therapies and interventions. The process of aging is associated with the onset of various age-related diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. A comprehensive understanding of these mechanisms offers novel opportunities to develop effective strategies that can mitigate the effects of senescence. This article will provide a comprehensive overview of the mechanisms contributing to mitochondrial dysfunction during the senescence process. In addition, it will offer a detailed review of the major consequences of this dysfunction, with a particular focus on its impact on cellular senescence.
References
Annesley, S. J., & Fisher, P. R. (2019). Mitochondria in Health and Disease. Cells, 8(7), 680. doi: 10.3390/cells8070680
Arbustini, E., Diegoli, M., Fasani, R., Grasso, M., Morbini, P., Banchieri, N., Bellini, O., Dal Bello, B., Pilotto, A., Magrini, G., Campana, C., Fortina, P., Gavazzi, A., Narula, J., & Viganò, M. (1998). Mitochondrial DNA Mutations and Mitochondrial Abnormalities in Dilated Cardiomyopathy. The American Journal of Pathology, 153(5), 1501–1510. doi: 10.1016/S0002-9440(10)65738-0
Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, Oxidants, and Aging. Cell, 120(4), 483–495. doi: 10.1016/j.cell.2005.02.001
Barrey, E., Saint-Auret, G., Bonnamy, B., Damas, D., Boyer, O., & Gidrol, X. (2011). Pre-microRNA and Mature microRNA in Human Mitochondria. PLoS ONE, 6(5), e20220. doi: 10.1371/journal.pone.0020220
Bernardini, J. P., Lazarou, M., & Dewson, G. (2017). Parkin and mitophagy in cancer. Oncogene, 36(10), 1315–1327. doi: 10.1038/onc.2016.302
Bertholet, A. M., Delerue, T., Millet, A. M., Moulis, M. F., David, C., Daloyau, M., Arnauné-Pelloquin, L., Davezac, N., Mils, V., Miquel, M. C., Rojo, M., & Belenguer, P. (2016). Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiology of Disease, 90, 3–19. doi: 10.1016/j.nbd.2015.10.011
Bishop, D. J., Botella, J., Genders, A. J., Lee, M. J.-C., Saner, N. J., Kuang, J., Yan, X., & Granata, C. (2019). High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology, 34(1), 56–70. doi: 10.1152/physiol.00038.2018
Boutant, M., Kulkarni, S. S., Joffraud, M., Ratajczak, J., Valera‐Alberni, M., Combe, R., Zorzano, A., & Cantó, C. (2017). Mfn2 is critical for brown adipose tissue thermogenic function. The EMBO Journal, 36(11), 1543–1558. doi: 10.15252/embj.201694914
Bravo-San Pedro, J. M., Kroemer, G., & Galluzzi, L. (2017). Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 120(11), 1812–1824. doi: 10.1161/CIRCRESAHA.117.311082
Bucha, S., Mukhopadhyay, D., & Bhattacharyya, N. P. (2015). Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2. Biochemical and Biophysical Research Communications, 465(4), 797–802. doi: 10.1016/j.bbrc.2015.08.090
Calió, M. L., Henriques, E., Siena, A., Bertoncini, C. R. A., Gil-Mohapel, J., & Rosenstock, T. R. (2020). Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Frontiers in Neuroscience, 14. doi: 10.3389/fnins.2020.00679
Canugovi, C., Stevenson, M. D., Vendrov, A. E., Lozhkin, A., Britton, S. L., Koch, L. G., Runge, M. S., & Madamanchi, N. R. (2022). Mitochondrial DAMPs-dependent inflammasome activation during aging induces vascular smooth muscle cell dysfunction and aortic stiffness in low aerobic capacity rats. The Journal of Cardiovascular Aging, 2(4), 47. doi: 10.20517/jca.2022.35
Chan, D. C. (2012). Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46(1), 265–287. doi: 10.1146/annurev-genet-110410-132529
Chistiakov, D. A., Shkurat, T. P., Melnichenko, A. A., Grechko, A. V., & Orekhov, A. N. (2018). The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine, 50(2), 121–127. doi: 10.1080/07853890.2017.1417631
Choi, D. W. (2020). Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Frontiers in Neuroscience, 14. doi: 10.3389/fnins.2020.579953
Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A. Y., Carter, C., Yu, B. P., & Leeuwenburgh, C. (2009). Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Research Reviews, 8(1), 18–30. doi: 10.1016/j.arr.2008.07.002
Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., Yoo, S. J., Hay, B. A., & Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097), 1162–1166. doi: 10.1038/nature04779
Cortopassi, G. A., & Arnheim, N. (1990). Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Research, 18(23), 6927–6933. doi: 10.1093/nar/18.23.6927
Daneshpour, M., & Ghadimi-Daresajini, A. (2023). Overview of miR-106a Regulatory Roles: from Cancer to Aging. Bioengineering, 10(8), 892. doi: 10.3390/bioengineering10080892
Das, S., Kohr, M., Dunkerly‐Eyring, B., Lee, D. I., Bedja, D., Kent, O. A., Leung, A. K. L., Henao‐Mejia, J., Flavell, R. A., & Steenbergen, C. (2017). Divergent Effects of miR‐181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. Journal of the American Heart Association, 6(3). doi: 10.1161/JAHA.116.004694
de Duve, C., & Wattiaux, R. (1966). Functions of Lysosomes. Annual Review of Physiology, 28(1), 435–492. doi: 10.1146/annurev.ph.28.030166.002251
DeBalsi, K. L., Hoff, K. E., & Copeland, W. C. (2017). Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Research Reviews, 33, 89–104. doi: 10.1016/j.arr.2016.04.006
Delfarah, A., Parrish, S., Junge, J. A., Yang, J., Seo, F., Li, S., Mac, J., Wang, P., Fraser, S. E., & Graham, N. A. (2019). Inhibition of nucleotide synthesis promotes replicative senescence of human mammary epithelial cells. Journal of Biological Chemistry, 294(27), 10564–10578. doi: 10.1074/jbc.RA118.005806
Divakaruni, A. S., Wallace, M., Buren, C., Martyniuk, K., Andreyev, A. Y., Li, E., Fields, J. A., Cordes, T., Reynolds, I. J., Bloodgood, B. L., Raymond, L. A., Metallo, C. M., & Murphy, A. N. (2017). Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 216(4), 1091–1105. doi: 10.1083/jcb.201612067
Dodig, S., Čepelak, I., & Pavić, I. (2019). Hallmarks of senescence and aging. Biochemia Medica, 29(3), 483–497. doi: 10.11613/BM.2019.030501
Drummond, M. J., Addison, O., Brunker, L., Hopkins, P. N., McClain, D. A., LaStayo, P. C., & Marcus, R. L. (2014). Downregulation of E3 Ubiquitin Ligases and Mitophagy-Related Genes in Skeletal Muscle of Physically Inactive, Frail Older Women: A Cross-Sectional Comparison. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69(8), 1040–1048. doi: 10.1093/gerona/glu004
Du, H., Guo, L., & Yan, S. S. (2012). Synaptic Mitochondrial Pathology in Alzheimer’s Disease. Antioxidants & Redox Signaling, 16(12), 1467–1475. doi: 10.1089/ars.2011.4277
Erkkinen, M. G., Kim, M.-O., & Geschwind, M. D. (2018). Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, 10(4), a033118. doi: 10.1101/cshperspect.a033118
Fan, S., Tian, T., Chen, W., Lv, X., Lei, X., Zhang, H., Sun, S., Cai, L., Pan, G., He, L., Ou, Z., Lin, X., Wang, X., Perez, M. F., Tu, Z., Ferrone, S., Tannous, B. A., & Li, J. (2019). Mitochondrial miRNA Determines Chemoresistance by Reprogramming Metabolism and Regulating Mitochondrial Transcription. Cancer Research, 79(6), 1069–1084. doi: 10.1158/0008-5472.CAN-18-2505
Fivenson, E. M., Lautrup, S., Sun, N., Scheibye-Knudsen, M., Stevnsner, T., Nilsen, H., Bohr, V. A., & Fang, E. F. (2017). Mitophagy in neurodegeneration and aging. Neurochemistry International, 109, 202–209. doi: 10.1016/j.neuint.2017.02.007
Fulop, T., Witkowski, J. M., Olivieri, F., & Larbi, A. (2018). The integration of inflammaging in age-related diseases. Seminars in Immunology, 40, 17–35. doi: 10.1016/j.smim.2018.09.003
García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., Sandri, M., & Muñoz-Cánoves, P. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529(7584), 37–42. doi: 10.1038/nature16187
Gauba, E., Chen, H., Guo, L., & Du, H. (2019). Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer’s disease. Neurobiology of Disease, 121, 138–147. doi: 10.1016/j.nbd.2018.09.020
Gegg, M. E., Cooper, J. M., Chau, K.-Y., Rojo, M., Schapira, A. H. V., & Taanman, J.-W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 19(24), 4861–4870. doi: 10.1093/hmg/ddq419
Geiger, J., & Dalgaard, L. T. (2017). Interplay of mitochondrial metabolism and microRNAs. Cellular and Molecular Life Sciences, 74(4), 631–646. doi: 10.1007/s00018-016-2342-7
Geng, X., Geng, Z., Li, H., Zhang, Y., Li, J., & Chang, H. (2020). Over‐expression of TFB2M facilitates cell growth and metastasis via activating ROS‐Akt‐NF‐κB signalling in hepatocellular carcinoma. Liver International, 40(7), 1756–1769. doi: 10.1111/liv.14440
Gerasymchuk, M., Cherkasova, V., Kovalchuk, O., & Kovalchuk, I. (2020). The Role of microRNAs in Organismal and Skin Aging. International Journal of Molecular Sciences, 21(15), 5281. doi: 10.3390/ijms21155281
Giuliani, A., Cirilli, I., Prattichizzo, F., Mensà, E., Fulgenzi, G., Sabbatinelli, J., Graciotti, L., Olivieri, F., Procopio, A. D., Tiano, L., & Rippo, M. R. (2018). The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging, 10(10), 2855–2873. doi: 10.18632/aging.101591
Giuliani, A., Prattichizzo, F., Micolucci, L., Ceriello, A., Procopio, A. D., & Rippo, M. R. (2017). Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells? Mediators of Inflammation, 2017, 1–11. doi: 10.1155/2017/2309034
Giuliani, A., Prattichizzo, F., Micolucci, L., Ceriello, A., Procopio, A. D., & Rippo, M. R. (2019). Corrigendum to “Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells?” Mediators of Inflammation, 2019, 1–1. doi: 10.1155/2019/8716351
Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Robbins, P. D., … Demaria, M. (2019). Cellular Senescence: Defining a Path Forward. Cell, 179(4), 813–827. doi: 10.1016/j.cell.2019.10.005
Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., & Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences, 100(7), 4078–4083. doi: 10.1073/pnas.0737556100
Guerriero, R. M., Giza, C. C., & Rotenberg, A. (2015). Glutamate and GABA Imbalance Following Traumatic Brain Injury. Current Neurology and Neuroscience Reports, 15(5), 27. doi: 10.1007/s11910-015-0545-1
Guo, Y., Guan, T., Shafiq, K., Yu, Q., Jiao, X., Na, D., Li, M., Zhang, G., & Kong, J. (2023). Mitochondrial dysfunction in aging. Ageing Research Reviews, 88, 101955. doi: 10.1016/j.arr.2023.101955
Hackl, M., Brunner, S., Fortschegger, K., Schreiner, C., Micutkova, L., Mück, C., Laschober, G. T., Lepperdinger, G., Sampson, N., Berger, P., Herndler‐Brandstetter, D., Wieser, M., Kühnel, H., Strasser, A., Rinnerthaler, M., Breitenbach, M., Mildner, M., Eckhart, L., Tschachler, E., … Grillari, J. (2010). miR‐17, miR‐19b, miR‐20a, and miR‐106a are down‐regulated in human aging. Aging Cell, 9(2), 291–296. doi: 10.1111/j.1474-9726.2010.00549.x
Hassanpour, M., Rahbarghazi, R., Nouri, M., Aghamohammadzadeh, N., Safaei, N., & Ahmadi, M. (2019). Role of autophagy in atherosclerosis: foe or friend? Journal of Inflammation, 16(1), 8. doi: 10.1186/s12950-019-0212-4
HUTTER, E., RENNER, K., PFISTER, G., STÖCKL, P., JANSEN-DÜRR, P., & GNAIGER, E. (2004). Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochemical Journal, 380(3), 919–928. doi: 10.1042/bj20040095
Ibragimova, M., Kussainova, A., Aripova, A., Bersimbaev, R., & Bulgakova, O. (2024). The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells, 13(6), 550. doi: 10.3390/cells13060550
Ikeda, Y., Shirakabe, A., Brady, C., Zablocki, D., Ohishi, M., & Sadoshima, J. (2015). Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. Journal of Molecular and Cellular Cardiology, 78, 116–122. doi: 10.1016/j.yjmcc.2014.09.019
Jin, H. S., Suh, H.-W., Kim, S.-J., & Jo, E.-K. (2017). Mitochondrial Control of Innate Immunity and Inflammation. Immune Network, 17(2), 77. doi: 10.4110/in.2017.17.2.77
Karamanlidis, G., Garcia-Menendez, L., Kolwicz, S. C., Lee, C. F., & Tian, R. (2014). Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. American Journal of Physiology-Heart and Circulatory Physiology, 307(9), H1307–H1316. doi: 10.1152/ajpheart.00280.2014
Karamanlidis, G., Nascimben, L., Couper, G. S., Shekar, P. S., del Monte, F., & Tian, R. (2010). Defective DNA Replication Impairs Mitochondrial Biogenesis In Human Failing Hearts. Circulation Research, 106(9), 1541–1548. doi: 10.1161/CIRCRESAHA.109.212753
Kerr, J. S., Adriaanse, B. A., Greig, N. H., Mattson, M. P., Cader, M. Z., Bohr, V. A., & Fang, E. F. (2017). Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends in Neurosciences, 40(3), 151–166. doi: 10.1016/j.tins.2017.01.002
Kim, Y., Ji, H., Cho, E., Park, N.-H., Hwang, K., Park, W., Lee, K.-S., Park, D., & Jung, E. (2021). nc886, a Non-Coding RNA, Is a New Biomarker and Epigenetic Mediator of Cellular Senescence in Fibroblasts. International Journal of Molecular Sciences, 22(24), 13673. doi: 10.3390/ijms222413673
Kirkland, J. L., & Tchkonia, T. (2020). Senolytic drugs: from discovery to translation. Journal of Internal Medicine, 288(5), 518–536. doi: 10.1111/joim.13141
Koyano, F., Yamano, K., Kosako, H., Tanaka, K., & Matsuda, N. (2019). Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. Journal of Biological Chemistry, 294(26), 10300–10314. doi: 10.1074/jbc.RA118.006302
Kroemer, G., & Pouyssegur, J. (2008). Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell, 13(6), 472–482. doi: 10.1016/j.ccr.2008.05.005
Kussainova, A., Bulgakova, O., Aripova, A., Khalid, Z., Bersimbaev, R., & Izzotti, A. (2022). The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines, 10(2), 428. doi: 10.3390/biomedicines10020428
Lang, A., Grether-Beck, S., Singh, M., Kuck, F., Jakob, S., Kefalas, A., Altinoluk-Hambüchen, S., Graffmann, N., Schneider, M., Lindecke, A., Brenden, H., Felsner, I., Ezzahoini, H., Marini, A., Weinhold, S., Vierkötter, A., Tigges, J., Schmidt, S., Stühler, K., … Piekorz, R. P. (2016). MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging, 8(3), 484–505. doi: 10.18632/aging.100905
Lee, A., Kondapalli, C., Virga, D. M., Lewis, T. L., Koo, S. Y., Ashok, A., Mairet-Coello, G., Herzig, S., Foretz, M., Viollet, B., Shaw, R., Sproul, A., & Polleux, F. (2022). Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nature Communications, 13(1), 4444. doi: 10.1038/s41467-022-32130-5
Lee, H., Tak, H., Park, S. J., Jo, Y. K., Cho, D. H., & Lee, E. K. (2017). microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor. BMB Reports, 50(4), 214–219. doi: 10.5483/BMBRep.2017.50.4.006
Levine, B., & Kroemer, G. (2019). Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 176(1–2), 11–42. doi: 10.1016/j.cell.2018.09.048
Li, F., He, X., Ye, D., Lin, Y., Yu, H., Yao, C., Huang, L., Zhang, J., Wang, F., Xu, S., Wu, X., Liu, L., Yang, C., Shi, J., He, X., Liu, J., Qu, Y., Guo, F., Zhao, J., … Zhao, S. (2015). NADP+-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance. Molecular Cell, 60(4), 661–675. doi: 10.1016/j.molcel.2015.10.017
Li, Xia, Li, C., Zhang, W., Wang, Y., Qian, P., & Huang, H. (2023). Inflammation and aging: signaling pathways and intervention therapies. Signal Transduction and Targeted Therapy, 8(1), 239. doi: 10.1038/s41392-023-01502-8
Li, Xiang, Zhang, Y., Yeung, S. C., Liang, Y., Liang, X., Ding, Y., Ip, M. S. M., Tse, H.-F., Mak, J. C. W., & Lian, Q. (2014). Mitochondrial Transfer of Induced Pluripotent Stem Cell–Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke–Induced Damage. American Journal of Respiratory Cell and Molecular Biology, 51(3), 455–465. doi: 10.1165/rcmb.2013-0529OC
Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G., Grover, A., Niedzielko, T. L., Schneider, L. E., Mastroeni, D., Caselli, R., Kukull, W., Morris, J. C., Hulette, C. M., Schmechel, D., Rogers, J., & Stephan, D. A. (2008). Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proceedings of the National Academy of Sciences, 105(11), 4441–4446. doi: 10.1073/pnas.0709259105
Li-Harms, X., Milasta, S., Lynch, J., Wright, C., Joshi, A., Iyengar, R., Neale, G., Wang, X., Wang, Y.-D., Prolla, T. A., Thompson, J. E., Opferman, J. T., Green, D. R., Schuetz, J., & Kundu, M. (2015). Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice. Blood, 125(1), 162–174. doi: 10.1182/blood-2014-07-586396
Lin, H.-Y., Liou, C.-W., Chen, S.-D., Hsu, T.-Y., Chuang, J.-H., Wang, P.-W., Huang, S.-T., Tiao, M.-M., Chen, J.-B., Lin, T.-K., & Chuang, Y.-C. (2015). Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion, 22, 31–44. doi: 10.1016/j.mito.2015.02.006
Liou, G.-Y., Döppler, H., DelGiorno, K. E., Zhang, L., Leitges, M., Crawford, H. C., Murphy, M. P., & Storz, P. (2016). Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Reports, 14(10), 2325–2336. doi: 10.1016/j.celrep.2016.02.029
Maldonado, E., Morales-Pison, S., Urbina, F., & Solari, A. (2023a). Aging Hallmarks and the Role of Oxidative Stress. Antioxidants, 12(3), 651. doi: 10.3390/antiox12030651
Maldonado, E., Morales-Pison, S., Urbina, F., & Solari, A. (2023b). Aging Hallmarks and the Role of Oxidative Stress. Antioxidants, 12(3), 651. doi: 10.3390/antiox12030651
Masuzawa, A., Black, K. M., Pacak, C. A., Ericsson, M., Barnett, R. J., Drumm, C., Seth, P., Bloch, D. B., Levitsky, S., Cowan, D. B., & McCully, J. D. (2013). Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 304(7), H966–H982. doi: 10.1152/ajpheart.00883.2012
McLelland, G.-L., Goiran, T., Yi, W., Dorval, G., Chen, C. X., Lauinger, N. D., Krahn, A. I., Valimehr, S., Rakovic, A., Rouiller, I., Durcan, T. M., Trempe, J.-F., & Fon, E. A. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. ELife, 7. doi: 10.7554/eLife.32866
Meissner, C., Lorenz, H., Hehn, B., & Lemberg, M. K. (2015). Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy, 11(9), 1484–1498. doi: 10.1080/15548627.2015.1063763
Monzio Compagnoni, G., Di Fonzo, A., Corti, S., Comi, G. P., Bresolin, N., & Masliah, E. (2020). The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer’s Disease and Parkinson’s Disease. Molecular Neurobiology, 57(7), 2959–2980. doi: 10.1007/s12035-020-01926-1
Morton, H., Kshirsagar, S., Orlov, E., Bunquin, L. E., Sawant, N., Boleng, L., George, M., Basu, T., Ramasubramanian, B., Pradeepkiran, J. A., Kumar, S., Vijayan, M., Reddy, A. P., & Reddy, P. H. (2021). Defective mitophagy and synaptic degeneration in Alzheimer’s disease: Focus on aging, mitochondria and synapse. Free Radical Biology and Medicine, 172, 652–667. doi: 10.1016/j.freeradbiomed.2021.07.013
Mu, G., Deng, Y., Lu, Z., Li, X., & Chen, Y. (2020). miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochimica et Biophysica Sinica, 53(2), 220–228. doi: 10.1093/abbs/gmaa161
Narendra, D., Tanaka, A., Suen, D.-F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183(5), 795–803. doi: 10.1083/jcb.200809125
Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., Oyabu, J., Murakawa, T., Nakayama, H., Nishida, K., Akira, S., Yamamoto, A., Komuro, I., & Otsu, K. (2012). Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 485(7397), 251–255. doi: 10.1038/nature10992
Ong, S.-B., Subrayan, S., Lim, S. Y., Yellon, D. M., Davidson, S. M., & Hausenloy, D. J. (2010). Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 121(18), 2012–2022. doi: 10.1161/CIRCULATIONAHA.109.906610
Paschka, P., Schlenk, R. F., Gaidzik, V. I., Habdank, M., Krönke, J., Bullinger, L., Späth, D., Kayser, S., Zucknick, M., Götze, K., Horst, H.-A., Germing, U., Döhner, H., & Döhner, K. (2010). IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia With NPM1 Mutation Without FLT3 Internal Tandem Duplication. Journal of Clinical Oncology, 28(22), 3636–3643. doi: 10.1200/JCO.2010.28.3762
Peoples, J. N., Saraf, A., Ghazal, N., Pham, T. T., & Kwong, J. Q. (2019). Mitochondrial dysfunction and oxidative stress in heart disease. Experimental & Molecular Medicine, 51(12), 1–13. doi: 10.1038/s12276-019-0355-7
Pernas, L., & Scorrano, L. (2016). Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annual Review of Physiology, 78(1), 505–531. doi: 10.1146/annurev-physiol-021115-105011
Pickles, S., Vigié, P., & Youle, R. J. (2018a). Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology, 28(4), R170–R185. doi: 10.1016/j.cub.2018.01.004
Pickles, S., Vigié, P., & Youle, R. J. (2018b). Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology, 28(4), R170–R185. doi: 10.1016/j.cub.2018.01.004
Pinti, M., Cevenini, E., Nasi, M., De Biasi, S., Salvioli, S., Monti, D., Benatti, S., Gibellini, L., Cotichini, R., Stazi, M. A., Trenti, T., Franceschi, C., & Cossarizza, A. (2014). Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm‐aging.” European Journal of Immunology, 44(5), 1552–1562. doi: 10.1002/eji.201343921
Plowey, E. D., Johnson, J. W., Steer, E., Zhu, W., Eisenberg, D. A., Valentino, N. M., Liu, Y.-J., & Chu, C. T. (2014). Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(9), 1596–1603. doi: 10.1016/j.bbadis.2014.05.016
Pomatto, L. C. D., & Davies, K. J. A. (2018). Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 124, 420–430. doi: 10.1016/j.freeradbiomed.2018.06.016
Pradeepkiran, J. A., & Reddy, P. H. (2020). Defective mitophagy in Alzheimer’s disease. Ageing Research Reviews, 64, 101191. doi: 10.1016/j.arr.2020.101191
Proietti, S., Cucina, A., Minini, M., & Bizzarri, M. (2017). Melatonin, mitochondria, and the cancer cell. Cellular and Molecular Life Sciences, 74(21), 4015–4025. doi: 10.1007/s00018-017-2612-z
Rak, M., Bénit, P., Chrétien, D., Bouchereau, J., Schiff, M., El-Khoury, R., Tzagoloff, A., & Rustin, P. (2016). Mitochondrial cytochrome c oxidase deficiency. Clinical Science, 130(6), 393–407. doi: 10.1042/CS20150707
Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett Jr., J. P. (2014). Mitochondrial DNA Copy Numbers in Pyramidal Neurons are Decreased and Mitochondrial Biogenesis Transcriptome Signaling is Disrupted in Alzheimer’s Disease Hippocampi. Journal of Alzheimer’s Disease, 40(2), 319–330. doi: 10.3233/JAD-131715
Ryter, S. W., Rosas, I. O., Owen, C. A., Martinez, F. J., Choi, M. E., Lee, C. G., Elias, J. A., & Choi, A. M. K. (2018). Mitochondrial Dysfunction as a Pathogenic Mediator of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 15(Supplement_4), S266–S272. doi: 10.1513/AnnalsATS.201808-585MG
Santos, R. X., Correia, S. C., Zhu, X., Smith, M. A., Moreira, P. I., Castellani, R. J., Nunomura, A., & Perry, G. (2013). Mitochondrial DNA Oxidative Damage and Repair in Aging and Alzheimer’s Disease. Antioxidants & Redox Signaling, 18(18), 2444–2457. doi: 10.1089/ars.2012.5039
Sebastián, D., Sorianello, E., Segalés, J., Irazoki, A., Ruiz‐Bonilla, V., Sala, D., Planet, E., Berenguer‐Llergo, A., Muñoz, J. P., Sánchez‐Feutrie, M., Plana, N., Hernández‐Álvarez, M. I., Serrano, A. L., Palacín, M., & Zorzano, A. (2016). Mfn2 deficiency links age‐related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. The EMBO Journal, 35(15), 1677–1693. doi: 10.15252/embj.201593084
Sheeran, F. L., & Pepe, S. (2017). Mitochondrial Bioenergetics and Dysfunction in Failing Heart (pp. 65–80). doi: 10.1007/978-3-319-55330-6_4
Shen, J., Dai, Z., Li, Y., Zhu, H., & Zhao, L. (2022). TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy. Diabetology & Metabolic Syndrome, 14(1), 26. doi: 10.1186/s13098-021-00780-y
Sripada, L., Tomar, D., Prajapati, P., Singh, R., Singh, A. K., & Singh, R. (2012). Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA. PLoS ONE, 7(9), e44873. doi: 10.1371/journal.pone.0044873
Stanga, S., Caretto, A., Boido, M., & Vercelli, A. (2020). Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. International Journal of Molecular Sciences, 21(10), 3719. doi: 10.3390/ijms21103719
Stöckl, P., Hütter, E., Zwerschke, W., & Jansen-Dürr, P. (2006). Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Experimental Gerontology, 41(7), 674–682. doi: 10.1016/j.exger.2006.04.009
Suomalainen, A., & Nunnari, J. (2024). Mitochondria at the crossroads of health and disease. Cell, 187(11), 2601–2627. doi: 10.1016/j.cell.2024.04.037
Swerdlow, R. H. (2018). Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 62(3), 1403–1416. doi: 10.3233/JAD-170585
Thundyil, J., & Lim, K.-L. (2015). DAMPs and neurodegeneration. Ageing Research Reviews, 24, 17–28. doi: 10.1016/j.arr.2014.11.003
Tobore, T. O. (2019). On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurological Sciences, 40(8), 1527–1540. doi: 10.1007/s10072-019-03863-x
Vaglio-Garro, A., Kozlov, A. V., Smirnova, Y. D., & Weidinger, A. (2024). Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. International Journal of Molecular Sciences, 25(4), 2276. doi: 10.3390/ijms25042276
Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M. K., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., González-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., … Wood, N. W. (2004). Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science, 304(5674), 1158–1160. doi: 10.1126/science.1096284
Verma, M., Callio, J., Otero, P. A., Sekler, I., Wills, Z. P., & Chu, C. T. (2017). Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants. The Journal of Neuroscience, 37(46), 11151–11165. doi: 10.1523/JNEUROSCI.3791-16.2017
Verma, M., Lizama, B. N., & Chu, C. T. (2022). Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Translational Neurodegeneration, 11(1), 3. doi: 10.1186/s40035-021-00278-7
Wu, J., Venkata Subbaiah, K. C., Jiang, F., Hedaya, O., Mohan, A., Yang, T., Welle, K., Ghaemmaghami, S., Tang, W. H. W., Small, E., Yan, C., & Yao, P. (2021). MicroRNA‐574 regulates FAM210A expression and influences pathological cardiac remodeling. EMBO Molecular Medicine, 13(2). doi: 10.15252/emmm.202012710
Xu, F., Li, Y., Li, S., Ma, Y., Zhao, N., Liu, Y., Qian, N., Zhao, H., & Li, Y. (2014). Complete Freund’s adjuvant–induced acute inflammatory pain could be attenuated by triptolide via inhibiting spinal glia activation in rats. Journal of Surgical Research, 188(1), 174–182. doi: 10.1016/j.jss.2013.11.1087
Xu, Q., Fu, Q., Li, Z., Liu, H., Wang, Y., Lin, X., He, R., Zhang, X., Ju, Z., Campisi, J., Kirkland, J. L., & Sun, Y. (2021). The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nature Metabolism, 3(12), 1706–1726. doi: 10.1038/s42255-021-00491-8
Yan, C., Duanmu, X., Zeng, L., Liu, B., & Song, Z. (2019). Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells, 8(4), 379. doi: 10.3390/cells8040379
Yan, K., An, T., Zhai, M., Huang, Y., Wang, Q., Wang, Y., Zhang, R., Wang, T., Liu, J., Zhang, Y., Zhang, J., & Wang, K. (2019). Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death & Disease, 10(7), 500. doi: 10.1038/s41419-019-1734-7
Yang, Y., Ouyang, Y., Yang, L., Beal, M. F., McQuibban, A., Vogel, H., & Lu, B. (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proceedings of the National Academy of Sciences, 105(19), 7070–7075. doi: 10.1073/pnas.0711845105
Youle, R. J. (2019). Mitochondria—Striking a balance between host and endosymbiont. Science, 365(6454). doi: 10.1126/science.aaw9855
Zemirli, N., Morel, E., & Molino, D. (2018). Mitochondrial Dynamics in Basal and Stressful Conditions. International Journal of Molecular Sciences, 19(2), 564. doi: 10.3390/ijms19020564
Zhang, X., Farrell, J. J., Tong, T., Hu, J., Zhu, C., Wang, L., Mayeux, R., Haines, J. L., Pericak‐Vance, M. A., Schellenberg, G. D., Lunetta, K. L., & Farrer, L. A. (2022). Association of mitochondrial variants and haplogroups identified by whole exome sequencing with Alzheimer’s disease. Alzheimer’s & Dementia, 18(2), 294–306. doi: 10.1002/alz.12396
Zhang, Y., Chen, L., Hu, G.-Q., Zhang, N., Zhu, X.-D., Yang, K.-Y., Jin, F., Shi, M., Chen, Y.-P., Hu, W.-H., Cheng, Z.-B., Wang, S.-Y., Tian, Y., Wang, X.-C., Sun, Y., Li, J.-G., Li, W.-F., Li, Y.-H., Tang, L.-L., … Ma, J. (2019). Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. New England Journal of Medicine, 381(12), 1124–1135. doi: 10.1056/NEJMoa1905287
Zhu, X., Perry, G., Smith, M. A., & Wang, X. (2012). Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 33(s1), S253–S262. doi: 10.3233/JAD-2012-129005
Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., Pirtskhalava, T., Giorgadze, N., Johnson, K. O., Giles, C. B., Wren, J. D., Niedernhofer, L. J., Robbins, P. D., & Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428–435. doi: 10.1111/acel.12445
Zhunina, O. A., Yabbarov, N. G., Grechko, A. V., Starodubova, A. V., Ivanova, E., Nikiforov, N. G., & Orekhov, A. N. (2021). The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Frontiers in Molecular Biosciences, 8. doi: 10.3389/fmolb.2021.671908