The Genetic Diversity of Hippophae rhamnoides in Technogenic Areas of Northern Kazakhstan
DOI:
https://doi.org/10.31489/2025feb4/4-12Keywords:
ISSR markers, molecular analysis, polymorphism, population, Hippophae rhamnoidesAbstract
Genetic diversity is a key indicator of a species’ evolutionary development, adaptability to environmental changes, and long-term survival. Globally, the sustainable use and conservation of genetic resources, including in situ protection and population-level genetic studies, is a major scientific priority. Sea buckthorn (Hippophae rhamnoides L., Elaeagnaceae) has been traditionally used for centuries, but only recently recognized for its significant economic value. Its berries are rich in biologically active compounds, making the species increasingly important in medicine, agriculture, food, and cosmetics across Europe and Asia. This study evaluates the genetic diversity of Hippophae rhamnoides in technogenic zones of Northern Kazakhstan using ISSR markers. Seed samples were collected from two plant populations in the Prigorodny Forest District, Kostanay region, for molecular analysis. ISSR analysis showed high within-population polymorphism (87%) and lower between-population polymorphism (13%) in Hippophae rhamnoides. UPGMA clustering revealed genetic differentiation between and within populations, indicating distinct genetic origins and potential cross-pollination. The high within-population polymorphism and clustering pattern indicate genetic differentiation of Hippophae rhamnoides forms according to their origin. This study is preliminary, and further research should include populations from other technogenically affected regions and comparative analysis with populations from protected areas.
References
1 Radionov, A. (2013). The states of forest genetic resourses in the SEC region. The Republic of Kazakhstan Country Report Food and Agriculture Organization of the United Nations. Ankara.
2 Thomas, S., Li, C., & Beveridge, H.J. (2007). Sea Buckthorn: A New Medicinal and Nutritional Botanical. Ottawa: Agriculture and Agri-Food Canada.
3 Khasenova, A.B., Aralbaeva, A.N., Utegaliyeva, R.S., Mamataeva, A.T., & Murzakhmetova, M.K. (2020). Oblepikha krushinovidnaia (Hippophae rhamnoides L.) — istochnik bioaktivnykh veshchestv [Sea buckthorn (Hippophae rhamnoides L.) as a source of bioactive compounds]. Vestnik Almatinskogo Tekhnologicheskogo Universiteta — Bulletin of Almaty Technological Uni versity, 1, 82–88 [in Russian]
4 Bernarth, J., & Foldesi, D. (1992). Sea buckthorn (Hippophae rhamnoides L.): a promising new medicinal and food crop. J. Herbs Spices Med. Plants, 1(1-2), 27–35. DOI: https://doi.org/10.1300/J044v01n01_04
5 Negi, B., Kaur, R., Li, T.S.C., & Schroeder, W.R. (1996). Sea Buckthorn (Hippophae rhamnoides L.): A multipurpose Plant. Hort Technology., 6, 370‒380. DOI: https://doi.org/10.21273/HORTTECH.6.4.370
6 Bailey, L.H., & Bailey, E.Z. (1978). A concise dictionary of plants cultivated in the United States and Canada. MacMillan Pub. Co. Inc.
7 Shadmanova, L.Sh., Mukan, G.S., Akhatov, K.Zh., Yeszhanova, A.S., Kanapin, Ch.B., & Sitpaeva, G.T. (2024). Current state and ecological features of Hippophae rhamnoides L. cenopopulations in Northern Kazakhstan. Bulletin of the Karaganda Uni versity. Series Biology. Medicine. Geography, 29, 4(116), 101‒107. https://doi.org/10.31489/2024bmg4/101-107. DOI: https://doi.org/10.31489/2024bmg4/101-107
8 Almerekova, S., Yermagambetova, M., Sumbembayev, A., Imanbayeva, A., & Turuspekov, Y. (2024). DNA Barcoding of Hippophae Rhamnoides L. Collected from Natural and Introduced Populations in Kazakhstan. Eurasian Journal of Applied Biotechnology, 3, 9‒19. https://doi.org/10.11134/btp.3.2024.2. DOI: https://doi.org/10.11134/btp.3.2024.2
9 Dzhangaliev, A.D., Salova, T.N., & Turekhanova, R.M. (2003). The Wild Fruit and Nut Plants of Kazakhstan. John Wiley and Sons. DOI: https://doi.org/10.1002/9780470650868.ch3
10 (1956‒1966). Flora Kazakhstana [Flora of Kazakhstan]. Alma-Ata: Nauka [in Russian].
11 Friesen, N. (2007). Molekuliarnye metody, ispolzuemye v sistematike rastenii [Molecular methods used in plant systematics]. Barnaul: AzBuka, 33–34 [in Russian].
12 Zemtsova, A.Ya., Zubarev, Yu.A., Gunin, A.V., & Ivanova, M.S. (2017). Otsenka geneticheskogo polimorfizma obraztsov roda oblepikhi (Hippophae L.) razlichnogo ekologo-geograficheskogo proiskhozhdeniia posredstvom ISSR markerov [Assessment of genetic polymorphism of sea buckthorn (Hippophae L.) samples of different ecological and geographical origin using ISSR markers]. Vavilovskii zhurnal genetiki i selektsii — Vavilov journal of genetics and selection, 21(6), 623–629 [in Russian]. DOI: https://doi.org/10.18699/VJ17.278
13 Tian, Ch., Lei, Y., Shi, S., Nan, P., Chen, J. & Zhong, Y. (2004). Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forest., 27(3), 229–237. DOI: https://doi.org/10.1023/B:NEFO.0000022224.59436.7a
14 Shadmanova, L.Sh., Sitpaeva, G.T., Mukanova, G.S., & Friesen, N.V. (2019). Molecular-genetic analysis of Malus sieversii: comparison of the Dzungarian population in situ and ex situ. Turczaninowia, 22(2), 187‒198. https://doi.org/10.14258/turczaninowia.22.2.15. DOI: https://doi.org/10.14258/turczaninowia.22.2.15
15 Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol., 13(5), 1143–1155. DOI: https://doi.org/10.1111/j.1365-294X.2004.02141.x
16 Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


