Dendroclimatic analysis of common pine (Pinus sylvestris L.) on the SNNP “Burabay”territory

Authors

DOI:

https://doi.org/10.31489/2025feb4/118-126

Keywords:

Pinus sylvestris L., climate prediction, Burabay, precipitation, air temperature

Abstract

The study aims to obtain new data on the chronology of Pinus sylvestris L. under arid conditions in the forest[1]steppe zone of northern Kazakhstan, specifically in the northern part of the SNNP “Burabay” territory. Two sites were selected to compare how different factors influence wood growth. Analysis of the generalised tree[1]ring chronologies revealed a substantial number of trees in the study area that are between 170 and 220 years old. First-order autocorrelation values ranged from 0.68 to 0.78. The sensitivity coefficient indicated the pres[1]ence of a weak climatic signal. Short-term climate projections suggest a slight increase in temperature and a decrease in warm-season precipitation over the next 10 years.

References

1 (2016). Food and Agriculture Organization of the United Nations (FAO) Trees, forests and land use in drylands. The first global assessment: Preliminary findings (FAO Forestry Paper No. 184). Rome: FAO.

2 Zhao, X. et al. (2024). Global warming leads to growth increase in Pinus sylvestris in the Kazakh steppe. Forest Ecology and Management, 553, 121635. https://doi.org/10.1016/j.foreco.2023.121635 DOI: https://doi.org/10.1016/j.foreco.2023.121635

3 Dancheva, A. V. (2024). Sovremennoe sostoianie sosnovykh nasazhdenii rekreatsionnogo naznacheniia Kazakhstana [The current state of recreational pine plantations in Kazakhstan]. Tyumen: GAU Severnogo Zaural’ya. Retrieved from https://gausz.ru/nauka/setevye-izdaniya/2024/dancheva.pdf [in Russian]

4 Kopabayeva, A., Mazarzhanova, K., Köse, N., & Akkemik, Ü. (2017). Tree-ring chronologies of Pinus

sylvestris from Burabai Region (Kazakhstan) and their response to climate change. Dendrobiology, 78, 96–110. https://doi.org/10.12657/denbio.078.010 DOI: https://doi.org/10.12657/denbio.078.010

5 Mapitov, N. B. et al. (2023). Factors limiting radial growth of conifers on their semiarid borders across Kazakhstan. Biology, 12(4), 604. https://doi.org/10.3390/biology12040604 DOI: https://doi.org/10.3390/biology12040604

6 Vaganov, E. A., Shiyatov, S. G., & Mazepa, V. S. (1996). Dendroklimaticheskie issledovaniia v Uralo-Sibirskoi Subarktike [Dendroclimatic studies in the Ural-Siberian Subarctic]. Novosibirsk: Nauka [in Russian].

7 Goryachev, V. M. (2003). Podgotovka dendrokhronologicheskikh obraztsov dlia izmereniia pod mikroskopom [Preparation of dendrochronological samples for microscopic measurement]. Lesovedenie, 1, 65–77 [in Russian].

8 Shiyatov, S. G., Vaganov, E. A., Kirdyanov, A. V., et al. (2000). kh g . h ’ . Osnovy dendrokhronologii. Sbor i poluchenie drevesno-koltsevoi informatsii [Methods of dendrochronology. Part I. Basics of dendrochronology. Collection and processing of tree-ring information]. Krasnoiarsk: Krasnoiarskii gosudarstvennyi universitet [in Russian].

9 Zang, C., & Biondi, F. (2013). Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia, 31(1), 68–74. https://doi.org/10.1016/j.dendro.2012.08.001 DOI: https://doi.org/10.1016/j.dendro.2012.08.001

10 Rinn, F. (1996). Tsap version 3.5: Reference manual: Computer program for tree-ring analysis and presentation. Heidelberg, Germany: Frank Rinn.

11 Cook, E. R., & Kairiukstis, L. A. (Eds.). (1990). Methods of dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Press. DOI: https://doi.org/10.1007/978-94-015-7879-0

12 Holmes, R. L. (1992). The Dendrochronology Program Library. In R.L. Holmes & H.D. Grissino-Mayer (Eds.). International Tree-R g D k P g L ’ , 40–74. Tucson: University of Arizona.

13 Cook, E. R., & Krusic, P. J. (2008). A tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN) [Computer software]. Retrieved from http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html

14 Brandes, A. F. D. N., Albuquerque, R. P., Moraes, L. F. D. D., & Barros, C. F. (2016). Annual tree rings in Piptadenia gonoacantha (Mart.) J.F. Macbr. in a restoration experiment in the Atlantic Forest: Potential for dendroecological research. Acta Botanica Brasilica, 30, 383–388. https://doi.org/10.1590/0102-33062015abb0353 DOI: https://doi.org/10.1590/0102-33062016abb0101

15 Belokopytova, L. V., Zhirnova, D. F., Meko, D. M., Babushkina, E. A., Vaganov, E. A., & Krutovsky, K. V. (2021). Tree rings reveal the impact of soil temperature on larch growth in the forest-steppe of Siberia. Forests, 12, 1765. https://doi.org/10.3390/f12121765 DOI: https://doi.org/10.3390/f12121765

16 Carnicer, J., Vives-Ingla, M., Blanquer, L., Mendez-Camps, X., Rosell, C., Sabate, S., Gutierrez, E., Sauras, T., Penuelas, J., & Barbeta, A. (2021). Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic, and biotic conditions. Journal of Ecology, 109, 3322–3339. https://doi.org/10.1111/1365-2745.13790 DOI: https://doi.org/10.1111/1365-2745.13752

Downloads

Published

2025-12-26

How to Cite

Mapitov, N., Kassanova , A., Ibraeva , K., Yestayeva , M., & Daulet , Z. (2025). Dendroclimatic analysis of common pine (Pinus sylvestris L.) on the SNNP “Burabay”territory. Fundamental and Experimental Biology, 12030(4), 118–126. https://doi.org/10.31489/2025feb4/118-126

Issue

Section

Articles