Molecular phylogenetic analysis of six Ribes L. species from Kazakhstan based on DNA barcodes of nuclear and chloroplast genomes
DOI:
https://doi.org/10.31489/2025feb3/138-147Keywords:
Ribes, Kazakhstan, phylogeny, ITS, rbcL, matK, DNA-barcodingAbstract
Ribes L. species are of significant ecological and economic importance. Their berries are rich in functional metabolites, which contribute to both their nutritional value and potential health benefits. However, the genus is taxonomically complex and requires comprehensive studies to resolve its phylogenetic relationships. In this study, we sequenced three genetic regions – the internal transcribed spacer (ITS) and the chloroplast genes matK and rbcL to investigate the phylogeny of Ribes species collected in Kazakhstan. There were six species analyzed Ribes janczewskii Pojark., Ribes aureum Pursh, Ribes graveolens Bunge, Ribes nigrum L., Ribes rubrum L., and Ribes saxatile Pall., collected from various regions of Kazakhstan. Phylogenetic trees were constructed using the Maximum Likelihood method implemented in IQ-TREE. The aligned sequence lengths were 686 base pairs (bp) for ITS, 750 bp for matK, and 498 bp for rbcL. Among these, the ITS region showed the highest number of polymorphic sites (219), followed by matK (195) and rbcL (50). Nucleotide diversity (Pi) was also highest in the ITS region (0.0735), nearly double that of matK (0.03703), and substantially greater than rbcL (0.01378). The nucleotide sequences of ITS, matK, and rbcL obtained from this study have been deposited in the GenBank database of the National Center for Biotechnology Information (NCBI) under accession numbers PV702933-PV702944, PV730383-PV730394, and PV730395-PV730406, respectively. The newly generated sequence data provide a valuable foundation for future phylogenetic and evolutionary research in Ribes.
References
Cortez R. E., Gonzalez de Mejia E. Blackcurrants (Ribes nigrum): A review on chemistry, processing, and health benefits // Journal of Food Science. – 2019. – Vol. 84, №9. – P. 2387–2401. – DOI: 10.1111/1750-3841.14754.
Sun X., Zhan Y., Li S. et al. Complete chloroplast genome assembly and phylogenetic analysis of blackcurrant (Ribes nigrum), red and white currant (Ribes rubrum), and gooseberry (Ribes uva-crispa) provide new insights into the phylogeny of Grossulariaceae // PeerJ. – 2023. – Vol. 11. – Article e16272. – DOI: 10.7717/peerj.16272.
Hummer K. E., Dale A. Horticulture of Ribes // Forest Pathology. – 2010. – Vol. 40, №3–4. – P. 251–263. – DOI: 10.1111/j.1439-0329.2010.00656.x.
Määttä K., Kamal-Eldin A., Törrönen R. Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.) // Antioxidants and Redox Signaling. – 2001. – Vol. 3, №6. – P. 981–993. – DOI: 10.1089/152308601317203507.
Ejaz A., Waliat S., Afzaal M. et al. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L): A comprehensive review // Food Science & Nutrition. – 2023. – Vol. 11, №10. – P. 5799–5817. – DOI: 10.1002/fsn3.3490.
Paunović S. M., Mašković P., Nikolić M., Miletić R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system // Scientia Horticulturae. – 2017. – Vol. 222. – P. 69–75. – DOI: 10.1016/j.scienta.2017.04.010.
Solcan M.-B., Fizeșan I., Vlase L. et al. Phytochemical profile and biological activities of extracts obtained from young shoots of blackcurrant (Ribes nigrum L.), European blueberry (Vaccinium myrtillus L.), and mountain cranberry (Vaccinium vitis-idaea L.) // Horticulturae. – 2023. – Vol. 9, №11. – Article 1163. – DOI: 10.3390/horticulturae9111163.
Abdulina S. A. Checklist of vascular plants of Kazakhstan. – Almaty: Institute of Botany and Plant Introduction, 1999. – Vol. 1. – 187 p.
Baitulin I. O., Sitpayeva G. T. Red Book of Kazakhstan. – Astana: 2014. – Vol. 2. – 452 p.
Kovalchuk I., Turdiev T., Kushnarenko S. et al. Cryopreservation of raspberry cultivars: Testing techniques for long-term storage of Kazakhstan's plant germplasm // Asian and Australasian Journal of Plant Science and Biotechnology. – 2010. – Vol. 4, №1. – P. 1–4.
Nurtaza A., Dyussembekova D., Islamova S. et al. In vitro conservation and genetic diversity analysis of rare species Ribes janczewskii // Scientific Reports. – 2024. – Vol. 14, №1. – Article 31117.
Andrianova N. G., Sirotina T. O., Izlivanova L. V., Likhacheva T. V. Ecological assessment of black currant varieties in the arid zone of Central Kazakhstan // Fruit Growing and Berry Growing of Russia. – 2016. – №45. – P. 29–33.
Magazhanov J. M., Bektursunova M. J. The study of BAS of some fruit and berry crops growing in the south-east of Kazakhstan // Machinery and Technology of Food Production. – 2016. – Vol. 43, №4. – P. 30–35.
Sirotina T. O., Andrianova N. G. Introduction of modern black currant varieties in the Zhezkazgan botanical garden // Editorial Board. – n.d. – Vol. 57.
Messinger W., Hummer K., Liston A. Ribes (Grossulariaceae) phylogeny as indicated by restriction-site polymorphisms of PCR-amplified chloroplast DNA // Plant Systematics and Evolution. – 1999. – Vol. 217. – P. 185–195.
Schultheis L. M., Donoghue M. J. Molecular phylogeny and biogeography of Ribes (Grossulariaceae), with an emphasis on gooseberries (subg. Grossularia) // Systematic Botany. – 2004. – Vol. 29, №1. – P. 77–96.
Senters A. E., Soltis D. E. Phylogenetic relationships in Ribes (Grossulariaceae) inferred from ITS sequence data // Taxon. – 2003. – Vol. 52, №1. – P. 51–66.
Doyle J. J., Doyle J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue // Phytochemical Bulletin. – 1987. – Vol. 19.
White T. J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics // In: PCR Protocols: A Guide to Methods and Applications. – 1990. – Vol. 18, №1. – P. 315–322.
Kress W. J., Erickson D. L. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region // PLoS One. – 2007. – Vol. 2, №6. – e508.
Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Molecular Biology and Evolution. – 2018. – Vol. 35, №6. – P. 1547–1549.
Nguyen L.-T., Schmidt H. A., Von Haeseler A., Minh B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Molecular Biology and Evolution. – 2015. – Vol. 32, №1. – P. 268–274.
Weitemier K., Straub S. C. K., Fishbein M., Liston A. Intragenomic polymorphisms among high-copy loci: A genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae) // PeerJ. – 2015. – Vol. 3. – e718.
Li J.-W., Li R.-Y., Chen Y.-M. et al. Comprehensive characterization and phylogenetic analysis of the complete plastomes of two ant–orchids, Caularthron bicornutum and Myrmecophila thomsoniana // BMC Plant Biology. – 2024. – Vol. 24, №1. – Article 1146.
Almerekova S., Shchegoleva N., Abugalieva S., Turuspekov Y. The molecular taxonomy of three endemic Central Asian species of Ranunculus (Ranunculaceae) // PLoS One. – 2020. – Vol. 15, №10. – e0240121.
Downie S. R., Spalik K., Katz-Downie D. S., Reduron J.-P. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences // Plant Diversity and Evolution. – 2010. – Vol. 128, №1. – P. 111.
Vallès J., Torrell M., Garnatje T. et al. The genus Artemisia and its allies: Phylogeny of the subtribe Artemisiinae (Asteraceae, Anthemideae) based on nucleotide sequences of nuclear ribosomal DNA ITS // Plant Biology. – 2003. – Vol. 5, №3. – P. 274–284.
Wei L., Pacheco-Reyes F. C., Villarreal-Quintanilla J. Á. et al. Effectiveness of DNA barcodes (rbcL, matK, ITS2) in identifying genera and species in Cactaceae // Pakistan Journal of Botany. – 2024. – Vol. 56, №5. – P. 1911–1928.
Su’udi M., Rosida W., Setyati D. DNA barcoding of Vanda tricolor Lindl. based on matK, rbcL and ITS2 sequences // 4th Int. Conf. on Life Sciences and Biotechnology (ICOLIB 2021). – 2022. – P. 596–604.
Tahir A., Hussain F., Ahmed N. et al. Assessing universality of DNA barcoding in geographically isolated selected desert medicinal species of Fabaceae and Poaceae // PeerJ. – 2018. – Vol. 6. – e4499.