Comparative karyological analysis of four species of Aedes mosquitoes inhabiting the territory of the Republic of Kazakhstan

Authors

DOI:

https://doi.org/10.31489/2025feb3/99-105

Keywords:

Aedes, mitotic chromosomes, C-stain, DAPI, FISH, rDNA, heterochromatin, bloodsucking mosquitoes

Abstract

Karyological analysis of 4 species of Aedes mosquitoes (Aedes vexans, Ae.caspius, Ae.cataphylla, Ae.subdiversus) collected on the territory of the Republic of Kazakhstan was carried out. As a result, the length of chromosomes of each species was measured, C- and DAPI staining and Fluorescent in situ hybridisation (FISH) of chromosomes with 18S rDNA sample were carried out. C- and DAPI staining showed localisation of heterochromatin in the centromere region. FISH revealed rDNA loci on chromosome 1 in Ae.cataphylla, and on chromosome 2 in Aedes vexans, Ae.caspius and Ae.subdiversus.

References

Wilkerson, R.C, Linton, Y.-M., Fonseca, D.M., Schultz, T.R., Price, D.C &, Strickman, D.A. (2015). Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary. PLoS ONE. 10(7); e0133602. https://doi.org/10.1371/journal.pone.0133602

Iwamura T., Guzman-Holst A., Murray K.A. (2020) Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 1;11(1):2130. doi: 10.1038/s41467-020-16010-4.

Nikookar S.H., Fazeli-Dinan M., Enayati A., Zaim M. (2020). Zika; a continuous global threat to public health. Environ Res. 188:109868. doi: 10.1016/j.envres.2020.109868

Deblauwe I., De Wolf K., De Witte J., Schneider A., Verlé I., Vanslembrouck A., Smitz N., Demeulemeester J. (2022) Parasit Vectors. From a long-distance threat to the invasion front: a review of the invasive Aedes mosquito species in Belgium between 2007 and 2020. Parasit Vectors 13;15(1):206. doi: 10.1186/s13071-022-05303-w.

Roiz D., Pontifes P.A., Jourdain F., Diagne C., Leroy B., Vaissière A.C., Tolsá-García M.J., Salles J.M., Simard F., Courchamp F. (2024). The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. Sci Total Environ. 10:933:173054. doi: 10.1016/j.scitotenv.2024.173054. Epub 2024 May 8.

Andreeva, Yu.V., Khrabrova, N.V., Alekseeva, S.S., Abylkassymova, G.M., Simakova, A.V. & Sibataev, A.K. (2021). First record of the invasive mosquito species Aedes koreicus (Diptera, Culicidae) in the Republic of Kazakhstan. Parasite. 28;52. https://doi.org/10.1051/parasite/2021050

Prokofieva-Belgovskaya. (1986). Geterohromaticheskie raiony hromosom [Heterochromatic regions of chromosomes]. Moscow: Nauka. 432 p.[in Russian].

Gutsevich, A.V., Monchadskii, A.S. & Stackelberg, A.A. (1970) Komari semeistva Culicidae fauny SSSR [Mosquitoes, family Culicidae, in Fauna of the U.S.S.R]. Academy of Sciences USSR, Zoological Institute. Leningrad, 384 p. [in Russian].

Gutsevich, A.V. & Dubitsky, A.M. (1981) Novyi vid komarov v faune sovetskogo souza (taksonomicheskaya morfologia [New species of mosquitoes in the fauna of the Soviet Union (Taxonomic morphology)]. Parasitological collection, 97–165 [in Russian].

Becker, N., Petric, D., Zgomba, M. Boase, C., Madon, M., Dahl, C.H. & Kaiser, A. (2010) Mosquitoes and their control. Heidelberg: Springer, Berlin. 577 p.

Kabanova, V.M. & Kartashova, N.N. Kariotipy krovososuschih komarov roda Aedes [Karyotypes of blood-sucking mosquitoes of the genus Aedes (Culicidae, Diptera)]. Genetika 1972, 8, 47–51 [in Russian].

Saifitdinova, A.F. (2008). Dvumernaya fluorescentnaya microscopia dlia analisa biologicheskis obraztsov [Two-dimensional fluorescence microscopy for analysis of biological samples]. In: Study Guide. St. Petersburg: SOLO, 1; 1–72 [in Russian] .

Wasserlauf, I.E., Alekseeva, S.S., Andreeva, Y.V., Sibataev, A.K. & Stegniy, V.N. (2018). A comparative analysis of the metaphase karyotypes of Aedes excrucians, Ae. behningi, and Ae. euedes (Diptera: Culicidae) imaginal disсs. Journal of Vector Ecology, 43; 245–251. https://doi.org/10.1111/jvec.12308

Alekseeva, S.S., Andreeva, Yu.V., Wasserlauf, I.E., Sibataev, A.K. & Stegniy, V.N. (2020). Analysis of the metaphase chromosome karyotypes in imaginal discs of Aedes communis, Ae. punctor, Ae. intrudens, and Ae. rossicus (Diptera: Culicidae) mosquitoes. Insects, 11(1); 63. https://doi.org/10.3390/insects11010063

Rao PN, Rai KS (1987) Comparative karyotypes and chromosomal evolution in some genera of nematocerous (Diptera: Nematocera) families. Ann Entomol Soc Am 80(3):321–332

Baimai V (1988) Constitutive heterochromatin differentiation and evolutionary divergence of karyotype in Oriental Anopheles (Cellia). Pac Sci 42:13–27

Rai KS, Black WC (1999) Mosquito genomes: structure, organization, and evolution. Adv Genet 41:1–33

Levan, A., Fregda, K., Sandberg, A. (1964). Nomenclature for centromeric position on chromosomes Herededitas. P.201-220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Alekseeva, S.S., Andreeva, Yu.V., Ilderbaev, O.Z., Sheruova, Y.A & Sibataev, A.K. (2025). The analysis of 18S rDNA localization in chromosomes of 8 mosquito species of Aedes and Ochlerotatus subgenera of the genus Aedes (Diptera, Culicidae). Entomological Science, 28(2); e12598. https://doi.org/10.1111/ens.12598

Downloads

Published

2025-09-30

Issue

Section

Articles