Comparative analysis of COMET, FISH, and TUNNEL methods for assessing DNA damage in plants under abiotic and biotic stresses

Authors

DOI:

https://doi.org/10.31489/2025feb3/128-137

Keywords:

TBSV, Nicotianabenthamiana, combined stress, DNA damage, oxidative stress, DNA repair, COMET assay, TUNEL assay, FISH hybridization

Abstract

Research aimed at studying plant DNA damage caused by various stress factors is an important area of modern molecular biology and genetics. In recent decades, there has been an intensive development of methods that make it possible to analyze in detail the molecular reactions of plants to abiotic and biotic stresses, which significantly deepens our understanding of the mechanisms of plant adaptation to adverse conditions. One of the key aspects of such studies is the assessment of damage to genetic material, which plays an important role in disrupting the normal functioning of plant cells and tissues. Special attention is paid to the combined effects of stress factors such as high fever and viral infections, such as Tobacco bushy stunt virus (TBSV) infection, which can significantly disrupt DNA integrity and disrupt normal cellular processes. This, in turn, can lead to changes in the activity of key genes, DNA repair, as well as effects on the physiological and morphological characteristics of plants.

In this article, we examined three methods that are actively used to assess DNA damage under combined stress conditions: COMET, TUNNEL and FISH. These methods allow for a comprehensive analysis of DNA damage, as well as to investigate their relationship to physiological and cellular changes in plants exposed to viral and temperature stress.

The purpose of this study is to explore the prospects of using COMET, FISH and TUNNEL assay methods to assess the level of damage in plant DNA under the influence of abiotic and biotic stress. The research is aimed at analyzing their effectiveness, as well as identifying advantages and limitations when working with plant objects.

References

Gill, S. S., &Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Waterworth, W. M., Drury, G. E., Bray, C. M., & West, C. E. (2019). DNA damage response: A means of maintaining genome stability in plants. New Phytologist, 221(2), 706–718. https://doi.org/10.1111/j.1469-8137.2011.03926

Balestrazzi A. et al. Genotoxic stress, DNA repair, and crop productivity //Crop improvement under adverse conditions. – New York, NY : Springer New York, 2012. – С. 153-169.

Acuña-Rodríguez I. S., Zúñiga-Venegas L. A., Molina-Montenegro M. A. Genotoxicity of oxidative stress and UV-B radiation in Antarctic vascular plants //Polar Biology. – 2021. – Т. 44. – №. 5. – С. 1029-1036.

Tyutereva E. V. et al. Comet assay: multifaceted options for studies of plant stress response //Horticulturae. – 2024. – Т. 10. – №. 2. – С. 174.

Shen H., Li Z. DNA double-strand break repairs and their application in plant DNA integration //Genes. – 2022. – Т. 13. – №. 2. – С. 322.

Kurotani K. et al. Genome sequence and analysis of Nicotianabenthamiana, the model plant for interactions between organisms //Plant and Cell Physiology. – 2023. – Т. 64. – №. 2. – С. 248-257.

López, C., Abreu, M. E., &Nájera, C. (2017). Temperature stress as a factor modulating viral replication and DNA damage in plants. Environmental and Experimental Botany, 138, 1–12. https://doi.org/10.1016/j.envexpbot.2017.03.015

Zhou Y. et al. Developmental programmed cell death involved in ontogenesis of Dictamnusdasycarpus capitate glandular hairs //Plants. – 2023. – Т. 12. – №. 2. – С. 395.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

Plitta-Michalak B. P. et al. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L //BMC Plant Biology. – 2022. – Т. 22. – №. 1. – С. 40.

Siddique, M. A., Islam, M. T., & Ali, M. A. (2020). Role of chromatin dynamics in plant stress responses: An overview. Plant Signaling & Behavior, 15(2), 1709284. https://doi.org/10.1080/15592324.2019.1709284

Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. In J. Lorsch (Ed.), Methods in Enzymology (Vol. 428, pp. 419–438). Academic Press. https://doi.org/10.1016/S0076-6879(07)28024-3

Wang, P., Du, Y., Hou, Y. J., Zhao, Y., Hsu, C. C., Yuan, F., ... & Zhu, J. K. (2018). Nitric oxide negatively regulates the oxidative stress response and DNA damage repair by S-nitrosylation of ATM kinase in plants. Nature Communications, 9, 1–11. https://doi.org/10.1038/s41467-018-07205-w

Kimura, S., &Sakaguchi, K. (2006). DNA repair in plants. Chemical Reviews, 106(2), 753–766. https://doi.org/10.1021/cr0404823

Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., &Mittler, R. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259–270. https://doi.org/10.1111/j.1365-3040.2011.02406.x

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., &Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

de Souza, A., de Campos, M. K. F., Silva, L. P., Vieira, L. G. E., &Vincentz, M. (2017). High temperature-induced oxidative stress in Nicotianatabacum is associated with increased levels of 8-oxoguanine. Plant Physiology and Biochemistry, 115, 187–194. https://doi.org/10.1016/j.plaphy.2017.04.011

Sinha, R., Ahmad, P., Prasad, M., &Tripathi, D. K. (2023). Virus-induced modulation of plant heat stress response pathways. Plant Stress, 3, 100068. https://doi.org/10.1016/j.stress.2023.100068

Wang, X., Zhao, X., Gao, Y., Yang, Y., Zhang, Y., & Wang, Y. (2018). Synergistic effects of heat and virus infection on oxidative damage and gene expression in tomato. Journal of Plant Physiology, 230, 121–130. https://doi.org/10.1016/j.jplph.2018.07.005

Collins A. et al. Measuring DNA modifications with the comet assay: a compendium of protocols //Nature protocols. – 2023. – Т. 18. – №. 3. – С. 929-989.

Mekonen A. A., Ali A. A review on principles of FISH and GISH and its role in cytogenetic study //Global Research in Environment and Sustainability. – 2023. – Т. 1. – №. 4. – С. 15-26.

Harun A. et al. Oligonucleotide fluorescence in situ hybridization: An efficient chromosome painting method in plants //Plants. – 2023. – Т. 12. – №. 15. – С. 2816.

Collins, A. R. (2004). The comet assay for DNA damage and repair: Principles, applications, and limitations. Molecular Biotechnology, 26(3), 249–261. https://doi.org/10.1385/MB:26:3:249

Pourrut B. et al. Recommendations for increasing alkaline comet assay reliability in plants //Mutagenesis. – 2015. – Т. 30. – №. 1. – С. 37-43.

Cordelli E., Bignami M., Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing //Toxicology Research. – 2021. – Т. 10. – №. 1. – С. 68-78.

Ladeira C. et al. The comet assay as a tool in human biomonitoring studies of environmental and occupational exposure to chemicals—a systematic scoping review //Toxics. – 2024. – Т. 12. – №. 4. – С. 270.

Mouhamad R. S. The Comet assay: A biomarker of DNA damage and adaptation in water hyacinth plants under climate change //Chemistry International. – 2024. – Т. 10. – №. 1. – С. 29-35.

Costea M. A. et al. the comet assay as a sustainable method for evaluating the genotoxicity caused by the soluble fraction derived from sewage sludge on diverse cell types, including lymphocytes, Coelomocytes and Allium cepa L. cells //Sustainability. – 2024. – Т. 16. – №. 1. – С. 457.

Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191. https://doi.org/10.1016/0014-4827(88)90265-0

Gichner, T., Žnidar, I., &Plewa, M. J. (2008). Comet assay with plants: A reliable tool for the evaluation of genotoxicity. Environmental and Molecular Mutagenesis, 49(4), 293–299. https://doi.org/10.1002/em.20387

Ventura, L., Macri, F., &Baldan, B. (2013). Assessment of DNA damage in plants: COMET assay and its applications. ActaPhysiologiaePlantarum, 35(10), 2951–2961. https://doi.org/10.1007/s11738-013-1340-4

Swidzinski, J. A., Sweetlove, L. J., & Leaver, C. J. (2002). A custom microarray analysis of programmed cell death in Arabidopsis. Plant Physiology and Biochemistry, 40(3), 205–212. https://doi.org/10.1016/S0981-9428(02)01310-8

Liu Y. L. et al. A method for analyzing programmed cell death in xylem development by flow cytometry //Frontiers in Plant Science. – 2023. – Т. 14. – С. 1196618.

Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology, 119(3), 493–501. https://doi.org/10.1083/jcb.119.3.493

Umesha M. et al. Root-Specific Expression of Anti-Apoptotic Gene AtBAG4 for Engineering Fusarium Wilt Resistance in Banana cv. Rasthali //Tropical Plant Biology. – 2025. – Т. 18. – №. 1. – С. 14.

Danon, A., Delorme, V., Mailhac, N., &Gallois, P. (2000). Plant programmed cell death: A common way to die. Plant Molecular Biology, 44(3), 259–269. https://doi.org/10.1023/A:1006422230270

Jiang, J., & Gill, B. S. (2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 49(9), 1057–1068. https://doi.org/10.1139/g06-076

Wu D. et al. Pseudorognerialibanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single-copy gene probes //International Journal of Molecular Sciences. – 2022. – Т. 23. – №. 23. – С. 14818.

Lichter, P., Tang, C. J., Call, K., Hermanson, G., Evans, G. A., Housman, D., & Ward, D. C. (1990). High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 247(4940), 64–69. https://doi.org/10.1126/science.2294592

Кузнецова В. М. и др. Некоторые особенности применения методов денатурационной и безденатурационной гибридизации insitu при изучении хромосом злаков //Вестник Московского университета. Серия 16. Биология. – 2019. – №. 2. – С. 94-100.

Ali, H. B. M., Farooq, M. A., & Ismail, M. (2022). Application of FISH in detection of plant chromosomal abnormalities under stress conditions. Cytogenetic and Genome Research, 162(3), 165–174. https://doi.org/10.1159/000526029

Türkan, I., &Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2–9. https://doi.org/10.1016/j.envexpbot.2009.05.008

Qian, D., Lin, Y., Jiang, Y., & Liu, M. (2019). Integrated use of comet assay, TUNEL and FISH reveals oxidative DNA damage and chromosomal abnormalities under aluminum stress in rice. Plant and Soil, 440, 113–129. https://doi.org/10.1007/s11104-019-04061-w

Fojtová, M., Peska, V., Dvořáčková, M., Mozgová, I., &Fajkus, J. (2021). Analysis of plant genome integrity using COMET, FISH and TUNEL under stress. Environmental and Molecular Mutagenesis, 62(3), 161–174. https://doi.org/10.1002/em.22393

Sakamoto, A., Okumura, T., & Kubo, K. (2014). Programmed cell death in response to virus infection in plants: Role of TUNEL. Journal of General Plant Pathology, 80(1), 1–10. https://doi.org/10.1007/s10327-013-0478-2

Houben, A., Schubert, I., & Weiss-Schneeweiss, H. (2014). FISH-based detection of chromosomal rearrangements in plants under stress. Chromosome Research, 22(2), 175–184. https://doi.org/10.1007/s10577-014-9423-7

Макарова М. Н., Макаров В. Г. Альтернативные методы оценки токсичности в рамках этической экспертизы. Обзор //Лабораторные животные для научных исследований. – 2022. – №. 1. – С. 52-73.

Roy, S. (2016). Maintenance of genome stability in plants: Repair and recombination. Genes, 7(4), 63. https://doi.org/10.3390/genes7040063

Charbonnel, C., Allain, E., Gallego, M. E., & White, C. I. (2011). Role of DNA repair pathways in plant development and stress response. PlantScience, 180(3), 233–243. https://doi.org/10.1016/j.plantsci.2010.11.004

Downloads

Published

2025-09-30

Issue

Section

Articles