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Mitochondrial dysfunction in cellular senescence 

Cellular senescence is a complex biological process characterized by cell cycle arrest and the loss of a cell’s 

ability to divide. Despite the involvement of numerous molecular mechanisms, mitochondria play a central 

role in this process. Mitochondrial dysfunction, indicated by impaired respiratory capacity and a diminished 

energy status of the cell, is frequently accompanied by an augmented production of free oxygen radicals, re-

sulting in oxidative stress. This condition not only accelerates cellular aging, but also its progression. A sub-

stantial body of research has substantiated the association between mitochondrial dysfunction and cellular se-

nescence, underscoring the significance of mitochondria as a target for anti-aging therapies and interventions. 

The process of aging is associated with the onset of various age-related diseases, including cancer, cardiovas-

cular diseases, and neurodegenerative diseases. A comprehensive understanding of these mechanisms offers 

novel opportunities to develop effective strategies that can mitigate the effects of senescence. This article 

summarizes the mechanisms contributing to the development of mitochondrial dysfunction during aging and 

discusses the main consequences of this impairment, particularly in the context of its impact on cellular se-

nescence. 

Keywords: cellular senescence, mitochondria, oxidative stress, mitophagy, microRNAs, age-associated dis-
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Introduction 

Cellular senescence is an inevitable state of cells caused by various stress effects and physiological pro-

cesses, which is characterized by irreversible cell cycle arrest. The process of senescence is influenced by 

numerous factors, including the accumulation of DNA damage, the shortening of telomeres, and the deterio-

ration of mitochondria [1]. Senescence cells are known to accumulate in the body, which has been associated 

with an increased risk of developing multiple chronic diseases, decreased physical stability, and 

mortality [2]. The precise etiology of aging remains to be elucidated, rendering it a fundamental subject in 

contemporary scientific inquiry. 

Mitochondria are membrane-bound organelles that play a central role in the energy metabolism of cells. 

They are responsible for a significant part of the production of adenosine triphosphate (ATP) molecules re-

quired for various cellular processes. In recent years, mounting evidence has indicated a causal relationship 

between mitochondrial dysfunction and the major mechanisms of senescence. The process of senescence 

itself has been demonstrated to be a significant factor in the development of various age-related diseases, 

including cancer, neurodegenerative diseases, and cardiovascular disease [3]. The exploration of these mech-

anisms may yield novel strategies for decelerating the aging process and addressing age-related diseases. 

This review aims to explore the intricate relationship between mitochondria and the senescence process, em-

phasizing the pivotal role of mitochondria in the development of age-related diseases. 

Mitochondria and their role in senescence processes 

The efficient operation of mitochondria is vital for the normal functioning of the organism. Mitochon-

dria can be regarded as highly dynamic structures, capable of rapid and substantial adjustment to conditions 

that reflect the needs of cells. However, it is important to note that various environmental factors, including 

radiation exposure, as well as endogenous agents, have the capacity to exert influence on mitochondrial func-

tion [4, 5]. For example, the synthesis of antioxidants is augmented under conditions of elevated oxidative 

stress, as well as during periods of enhanced physical exertion, resulting in an escalation of the main mito-

chondrial enzymes present within skeletal muscle tissues [6]. However, exposure to these factors can lead to 

mutations in mitochondrial DNA, which in turn contributes to impaired mitochondrial function. Disruption 

of mitochondrial integrity, both structurally and functionally, is a primary factor contributing to accelerated 

cellular senescence [4, 7–9]. 
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A plethora of theories has been postulated regarding the etiology of aging. Presently, the free-radical 

theory of aging, initially proposed by Denham Harman in the mid-1950s [10], occupies a central position 

among these theories. This theory posits that the accumulation of mitochondrial damage leads to the for-

mation of free radicals, which, when present in excess, can damage cellular components such as proteins, 

lipids, and nucleic acids. 

Mitochondrial DNA (mtDNA) has been shown to be more prone to damage in comparison to nuclear 

DNA. Its mutagenesis rate has been observed to be 10‒20 times higher [11]. This heightened susceptibility 

can be attributed to the absence of histones and introns within the mtDNA genome, the inefficacy of repair 

mechanisms, and the proximity to sites of reactive oxygen species formation [12, 13]. It has been established 

that the frequency of mitochondrial DNA mutations increases with age, and excessive amounts of these mu-

tations can disrupt the normal operation of mitochondria, leading to their dysfunction [14, 15]. 

Mitochondria are responsible for synthesizing approximately 90 % of the cell’s energy, thus acting as 

the cell’s multifunctional energy source. They synthesize ATP in a process known as oxidative phosphoryla-

tion via five electron-transport chain complexes. Mutations in mtDNA, which affect genes involved in oxida-

tive phosphorylation, have been shown to have deleterious consequences for cellular energy metabolism, 

including increased free radical production and decreased antioxidant defenses in the body [16, 17]. Oxida-

tive stress, characterized by an imbalance between the generation and elimination of free radicals, leading to 

their excessive formation, is considered a contributing factor to cellular senescence. Indeed, research has 

demonstrated that senescent cells exhibit reduced ATP production efficiency and a diminished energy  

status [18–20]. 

Mitochondria, being semi-autonomous organelles, possess a variety of mechanisms that enable them to 

maintain their integrity under stress. Mitophagy, a term derived from the Greek for “cell death”, is a critical 

process involved in maintaining a healthy mitochondrial population through the constant destruction of dys-

functional mitochondria [21]. 

The degradation process is mediated by the autophagosome and was first demonstrated in mammalian 

cells by electron microscopy [22]. The most studied mitophagy pathway is the Parkin/PINK1-mediated 

pathway [23]. For example, overexpression of PTEN-induced kinase 1 (PINK-1) in dopaminergic neurons 

extends lifespan in drosophilia, whereas loss of Parkin shortens lifespan [24]. By scavenging dysfunctional 

mitochondria, mitophagy prevents excessive release of damage-associated molecular patterns (DAMPs), 

which are based on free-circulating mtDNA [25]. If the damaged mitochondrion cannot be neutralized,  

mitochondrial membrane rupture and cytosolic release of DAMPs occur, leading to strong inflammatory  

responses. 

Proper control of mitochondrial function can limit inflammation and preserve cell function during se-

nescence, which is supported by numerous experiments [26–28]. In one study, mitophagy also positively 

affected skeletal muscle cells in mice and humans, preventing senescence [28]. In contrast, disruption of 

mitophagy contributed to accelerated senescence and the development of several human diseases, including 

age-related diseases such as Parkinson’s disease, Alzheimer’s disease [29], cardiovascular disease, and  

cancer [30, 31]. 

Mitochondria were originally thought to be isolated organelles, but there is now increasing evidence 

that they are constantly undergoing fusion and fission. Together, these processes form the basis of mitochon-

drial dynamics and may also be involved in the control and elimination of dysfunctional mitochondria [32]. 

The major proteins that enable these processes are mitofusin 1 and mitofusin 2 (Mfn1 and Mfn2) [33]. Mito-

chondrial fusion can facilitate the exchange of mitochondrial components, including the exchange of 

mtDNA, which allows the replacement of missing or damaged components in the mitochondrial net-

work [34]. In another case, the mitochondrial proteins Mfn1 and Mfn2 can be degraded, depending on the 

Parkin-dependent mitophagy pathway, to prevent the fusion of damaged mitochondria with the healthy mito-

chondrial network [35]. 

Fission is also a key process in maintaining a healthy mitochondrial population, separating damaged mi-

tochondria from the overall network. Mitochondrial dysfunction disrupts these processes, which can result in 

a fragmented network dominated by small round or elongated mitochondria [36]. In senescent cells, mito-

chondria tend to be in a hyper-split state, and deficits in their integrity may contribute to the initiation of var-

ious diseases [37, 38], as well as accelerated cellular senescence [39, 40]. 

In addition to reduced energy status, mitochondrial dysfunction is associated with the development of 

chronic inflammation [41]. Inflammation is a hallmark of senescence and a risk factor for the development of 

several diseases, negatively affects the immune system, and accelerates cellular senescence [42, 43]. DAMPs 
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are the major triggers of inflammation. They are recognized by specialized receptors of the innate immune 

system, such as toll-like receptors (TLRs) [44, 45]. Activation of this receptor initiates signal transduction 

pathways that normally trigger inflammation, resulting in the production of pro-inflammatory cytokines, par-

ticularly tumor necrosis factor TNF-α and interleukins (IL-6, 8, 12) [46]. 

Several studies have confirmed a correlation between levels of free circulating mtDNA in cells and 

proinflammatory cytokines, suggesting a link between mitochondrial dysfunction and inflammatory status 

[47, 48]. It is now well established that chronic inflammation underlies several age-related diseases such as 

atherosclerosis, Alzheimer’s disease, Parkinson’s disease, and type 2 diabetes [49–51]. 

After reviewing the major functions of mitochondria, we can conclude that they are important regula-

tors of both energy and inflammatory processes, making them key players in the mechanisms of senescence 

and the pathogenesis of various diseases. As we have seen, genetics plays an important role in controlling 

and modulating mitochondrial functions. However, in addition to genetics, there is another important aspect 

that deserves attention — mitochondrial microRNAs. 

 

Mitochondrial microRNAs and their involvement in cellular senescence processes 

MicroRNAs (miRNAs) are a group of small non-coding RNAs that play an important role in the regula-

tion of gene expression. The fact that microRNAs are located in mitochondria was discovered only recently, 

with the first discovery made by Barray and colleagues in 2011 [52]. These molecules have been collectively 

named “MitomiR”, and each mitochondrion has its own unique set of microRNAs specific to a particular cell 

type [53]. The origin of these elements may be either the nuclear or mitochondrial genome, and their func-

tion is of paramount importance in ensuring proper mitochondrial functionality. They fulfill this role by 

regulating mitochondrial genes themselves or by modulating the expression of nuclear genes that play a role 

in mitochondrial processes [54, 55]. In addition, mitochondrial microRNAs can influence mitochondrial dys-

function, making them one of the major catalysts for accelerated cellular senescence [56–58]. 

Recent studies show that MitomiR serves as crucial sensors of cellular senescence, exerting control over 

mitochondrial homeostasis and influencing metabolic state, redox balance, apoptosis, mitophagy, all pro-

cesses closely related to senescence. Some mitochondrial microRNAs, associated with cellular senescence 

are summarized in the Table. 

T a b l e  

The role of mitochondrial microRNAs in senescence 

Name Level Role in senescence Reference 

miR-15b:  

↓ 

Promotes formation of mitochondrial ROS, decreases mitochondrial 

membrane potential. Causes ATP deficiency, impairing cellular 

metabolism. Causes the development of a senescence-associated 

secretory phenotype (SASP), accelerating cellular senescence. 

[59] 

miR-181c:  

↓ 

Disrupts respiratory complex IV, causing mitochondrial dysfunc-

tion. Enhances cellular damage through excessive production of 

ROS. 

[60] 

miR-4485:  

↑ 

Negatively modulates respiratory complex I activity, ATP produc-

tion, increases ROS levels. Inhibits caspase-3/7 activation and 

apoptosis, slows down mitophagy. 

[61] 

miR-181a, 

miR- 34a: 

 

 

↑ 

Activate Bcl-2, affecting sensitivity to apoptosis, leading to im-

paired mitophagy, accumulation of old cells. Contribute to 

mitochondrial dysfunction. 

[56] 

miR-146a-5p: ↑ Promotes activation of NF-κB pathway, initiates transcription of 

pro-inflammatory cytokines. Accelerates senescence through 

SASPs. 

[62] 

miR-1, 

miR-133a, 

let-7b: 

↓ 

 

Negatively modulates the function of key proteins involved in oxi-

dative phosphorylation, reduce ETC functionality. Decrease the 

energy status of the cell.  

[62] 

miR-378-3p: ↑ Decrease the functionality of ATP synthase. Decrease oxidative 

capacity. 

[62] 
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C o n t i n u a t i o n  o f  T a b l e  

Name Level Role in senescence Reference 

miR-20b, 

miR-214, 

miR-200a-3p: 

↑ Negatively affect the expression of MFN1 and MFN2 genes, 

Disrupt the mitochondrial fusion-release balance, leading to im-

paired fusion and increased fragmentation.  

[63–65] 

miR-17: ↓ Promotes ROS formation. [66] 

miR-574-5p: ↑ Regulates protein expression of mitochondrial electron transport 

chain (ETC) genes, supporting normal mitochondrial function. 

[67] 

miR-762: ↑ May contribute to inhibition of ATP production and induction of 

ROS formation and apoptotic cell death. 

[68] 

miR-106a: ↑ Negatively regulates the expression of some critical cell cycle and 

apoptosis factors. Inhibits mitophagy. 

[66, 69] 

 

Thus, it is easy to speculate that miRNAs can regulate mitochondrial function, and this phenomenon has 

important implications for the aging process, as mitochondrial dysfunction has devastating consequences for 

cell fate. 

 

Mitochondrial Dysfunction and Age-Related Diseases 

Neurodegenerative diseases 

To date, the pathogenesis of neurodegenerative diseases remains in the center of scientific attention as it 

represents one of the most important problems facing modern society [70]. The factors underlying cognitive 

impairment in both natural aging and neurodegenerative diseases are not fully understood. There is consider-

able evidence that mutations in mitochondrial DNA and oxidative stress contribute to accelerated cellular 

senescence, which is a major risk factor for neurodegenerative diseases. 

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by impairment 

of memory, language, and other thinking skills, with dementia at its core [70, 71]. A number of mitochondri-

al abnormalities have been identified in AD: changes in mitochondrial structure, mutations in mtDNA, 

changes in mitochondrial membrane potential, formation of ROS, decreased ATP, and impaired mitochon-

drial fusion. There is a wealth of evidence linking mtDNA mutations to the pathogenesis of AD [72–78]. 

The brain is particularly susceptible to oxidative damage due to its high oxygen consumption. One of 

the most common defects in the mitochondrial ETC in AD is cytochrome-с-oxidase deficiency, which leads 

to increased production of ROS and impaired energy metabolism [79]. Several studies have shown impair-

ments of all five ETC complexes in different brain regions in AD [80]. Numerous studies have documented 

that mitochondrial dysfunction due to abnormal ROS processing is an important factor in the pathogenesis of 

Alzheimer’s disease [81]. It is known that brain cells must constantly produce ATP to maintain neuronal 

function. For example, oxidative damage to the promoter of the gene encoding a subunit of mitochondrial 

ATP synthase can lead to a decrease in its level, resulting in decreased ATP production, increased oxidative 

stress, and cell death [82, 83] 

Oxidative stress may also contribute to the pathogenesis of AD by disrupting calcium homeostasis  

[84, 85]. Glutamate is a neurotransmitter in the mammalian central nervous system that often mediates the 

synaptic transmission of nerve impulses. However, high levels of glutamate can be toxic, promoting neuronal 

death [86], and dendritic degeneration [87, 88]. Increased extracellular glutamate leads to its binding to 

NMDA calcium receptors. NMDA activation causes a massive influx of sodium and calcium into neurons 

and an outflow of potassium. Elevated Ca2+ levels cause irreversible damage to neurons, which promotes 

neuronal death [89]. 

Mitochondrial dysfunction and glutamate toxicity are linked. It has been shown that neurons have the 

ability to “burn” glutamate in the mitochondria, thereby preventing its toxicity [90]. In one of the studies, it 

was observed that when pyruvate is inhibited in neurons, glutamate consumption by the neurons increases, 

which leads to a decrease in extracellular glutamate levels, resulting in a decrease in cell death [91]. It is log-

ical to assume that mitochondrial dysfunction will inhibit this process, resulting in an opposite increase in 

extracellular glutamate levels. Thus, neuroinflammation caused by mitochondrial dysfunction leads to neu-

ronal loss and impaired neuronal plasticity, ultimately leading to Alzheimer’s disease Mitophagy is a critical 

pathway for mitochondrial quality control. The accumulation of beta-amyloid (Aβ) and phosphorylated tau-

protein (pTau) in the brain is a pathological hallmark of Alzheimer’s disease. Aβ and pTau impair mitochon-

drial integrity and exacerbate mitochondrial dysfunction. Oxidative damage caused by Aβ and pTau leads to 
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decreased levels of PINK1 and Parkin protein, which inhibits mitochondrial autophagy and thereby increases 

Aβ and pTau [92]. Disruption of fission or fusion processes, namely mutations in the MFN1, MFN2, and 

OPA1 genes, are also found in several neurodegenerative diseases, including AD [93–96]. In addition, ab-

normal mitochondrial fission and decreased expression of proteins related to their biogenesis (PGC-1α, 

TFAM, and NRF2) have been observed in AD patients, indicating impaired mitochondrial dynamics and bi-

ogenesis [97]. 

Parkinson’s disease (PD) is a common neurodegenerative disorder associated with motor dysfunction. 

A loss-of-function mutation in PARK2 is the most common cause of early-onset PD [98–100]. Loss of func-

tion of the PINK1 gene, which encodes a mitochondrial serine/threonine kinase, is the second most common 

cause of PD [101,102]. 

 

Cancer 

As early as 1924, Heinrich Warburg discovered that tumor cells are characterized by high glucose con-

sumption and use “aerobic glycolysis” to produce ATP even when oxygen is available. Based on these ob-

servations, it has been suggested that altered respiratory capacity caused by mitochondrial abnormalities may 

be one of the causes of cancer development. Indeed, increased glucose uptake and decreased OXPHOS activ-

ity have been observed in many tumor types, and it is believed that high glycolytic capacity is an important 

hallmark of cancer. For example, glycolysis is common in rapidly growing tumors and oxidative phosphory-

lation is slowed in these tumors [103]. 

Oxidative stress due to mitochondrial dysfunction, which is characterized by the production of reactive 

oxygen species in cells, plays a critical role in cancer development by affecting genome stability and signal-

ing pathways in the cellular microenvironment. Large amounts of ROS, which are by-products of mitochon-

drial dysfunction, are known to irreversibly damage cellular components, including nucleic acids. Such dam-

age can cause genetic or epigenetic alterations by upregulating oncogenes and tumor suppressor genes. For 

example, impaired expression of the gene encoding NADH dehydrogenase can stimulate aerobic glycolysis, 

ROS production, and tumor growth [104]. 

In addition, ROS can activate various signaling pathways that may contribute to oncogenesis. Examples 

include the epidermal growth factor receptor EGFR signaling pathway or the Akt/NF-κB-dependent signal-

ing pathway, which correlate with cancer development [105, 106]. 

IDH is a family of enzymes involved in oxidative phosphorylation. It includes three isoforms located in 

the cytoplasm, peroxisomes (IDH1) and mitochondria (IDH2 and IDH3). Some studies show that many tu-

mors, including gliomas and leukemias, have mutations in the genes encoding IDH1 or IDH2 [107, 108]. 

 

Cardiovascular Diseases 

One of the leading causes of death worldwide is cardiovascular disease (CVD). CVDs are a group of 

multifactorial diseases that affect the heart or blood vessels. Heart cells have a high energy demand, requir-

ing a constant supply of ATP to maintain cardiac activity. In cardiomyocytes, mitochondria make up about 

one-third of the cell volume. Not surprisingly, proper mitochondrial function and dynamics are critical for 

these cells, and their dysfunction is a key factor in cardiovascular disease. 

Oxidative stress is central to the development of CVD. Reduced mitochondrial function leads to the 

production of reactive oxygen species, depletion of cellular ATP, cellular damage and cardiomyocyte apop-

tosis. Unregulated production of ROS is responsible for a variety of cardiovascular diseases, including cardi-

ac hypertrophy, heart failure, and cardiac ischemia-reperfusion injury [109]. 

Alterations in mtDNA genes, including NADH dehydrogenase, cytochrome b, and ATP synthase genes, 

are observed in cardiomyopathies and heart failure [110]. In heart failure, mitochondria are damaged by 

membrane rupture and depletion of their matrix, resulting in decreased ATP synthesis [111]. It has been 

shown that patients with heart failure have decreased activity of respiratory complexes I and IV [112]. A 

study has also shown that the process of mtDNA replication is impaired in cardiomyocytes from people with 

heart failure, resulting in depletion of mitochondrial DNA, reduction of mitochondrial proteins, and impaired 

mitochondrial biogenesis [113]. 

A study has also shown that the process of mtDNA replication is impaired in cardiomyocytes from peo-

ple with heart failure, resulting in depletion of mitochondrial DNA, reduction of mitochondrial proteins, and 

impaired mitochondrial biogenesis [114]. Cardiac ischemia due to oxygen deprivation leads to mitochondrial 

fragmentation due to dysregulation of the Mfn2 protein [115]. The role of mitophagy in the development of 

CVDs cannot be overlooked. Atherosclerosis is an inflammatory disease of the arteries associated with im-
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paired lipid metabolism. The pathogenesis of this disease is associated with the accumulation of macrophag-

es, lipids, cholesterol, migration and proliferation of vascular smooth muscle cells. Mitophagy plays a key 

role in the removal of these accumulated substances, and disruption of this process will have devastating 

consequences, increasing vascular plaque formation due to the increase in ROS from damaged  

mitochondria [116]. 

 

Prospects for using mitochondria to fight senescence 

Given the close association of mitochondria with senescence, several approaches have been developed 

and used as strategies to treat mitochondrial dysfunction and age-related diseases. Mitochondrial transplanta-

tion is one of the new therapeutic methods used to treat age-related diseases, especially cardiovascular dis-

eases. The essence of the method is the transfer of “healthy” donor mitochondria into cells to replace dys-

functional or damaged mitochondria. 

The concept of transferring mitochondria between cells is similar to installing new batteries in malfunc-

tioning devices. By providing healthy mitochondria to cells with impaired energy metabolism, their ability to 

produce ATP and maintain cell survival can be restored. 

One study showed that mesenchymal stem cells could gradually transfer their mitochondria to lung epi-

thelial cells through structures called tunneled nanotubes (TNTs). This transfer helped reduce ATP loss in 

BEAS-2B cells exposed to cigarette smoke [117]. In another study, umbilical cord mesenchymal stem cells 

successfully transferred their mitochondria into mtDNA-deficient cells. This restored the expression of genes 

encoding mitochondrial proteins and improved the function of the ETC [118]. 

The energy produced by transplanted mitochondria can improve the function of recipient cells. For ex-

ample, transplantation of isolated mitochondria into ischemic hearts helps to reduce infarct size and improve 

senolytic function [119]. Mitochondrial transfer opens new doors by providing additional options for the 

treatment of age-related diseases. 

In recent years, hay therapy targeting mitochondria and antioxidants has gained particular popularity. 

Senotherapy is divided into two groups: senolytics, which kill senescent cells, and senomorphics, which in-

hibit inflammation. Senolytics have been shown to be highly effective in treating a wide range of age-related 

diseases, and clinical trials are currently underway for many of these modalities. 

Examples of senolytic drugs include BH3 mimetics such as ABT-263 (navitoclax). These drugs are 

used in certain types of senescent cells based on increased expression of anti-apoptotic proteins of the BCL-2 

family [120]. By inhibiting anti-apoptotic proteins, these drugs stabilize mitophagy and thereby remove old 

cells. In a study, procyanidin, a component of grape seed extract, was shown to have senotherapeutic activity 

and to extend the lifespan of mice by inhibiting SASP expression [121]. 

Thus, the use of mitochondria in the fight against aging represents a promising direction that opens new 

opportunities for improving health and quality of life. The development of various therapeutic approaches 

aimed at restoring mitochondrial function and overcoming age-related changes may have a significant impact 

on the treatment of age-related diseases. These strategies highlight the importance of mitochondria as key 

players in the aging process and their potential role in the future medical approach to longevity. 

Conclusion 

This article has reviewed the multifunctional role of mitochondria in senescence processes and their 

impact on cellular physiology. As the major source of cellular energy, mitochondria act as key regulators of 

oxidative stress in cells. Various environmental factors affect mitochondrial function on a daily basis, lead-

ing to an increased frequency of mitochondrial DNA mutations. All of this leads to mitochondrial dysfunc-

tion, which in turn causes a decrease in ATP synthesis, production of reactive oxygen species, and promotes 

chronic inflammation. The vicious cycle between oxidative stress and mitochondrial dysfunction leads to the 

development of cellular senescence. Furthermore, microRNAs have been demonstrated to play a pivotal role 

in the regulation of mitochondrial function, which is a critical aspect in comprehending the mechanisms of 

cellular senescence. A variety of age-related pathologies are marked by distinct mitochondrial mutations, 

which may contribute to the development and progression of these diseases. Consequently, mitochondria 

emerge as pivotal subjects for research in the biology of aging and the development of novel therapeutic 

strategies. A comprehensive understanding of these mechanisms could lead to the development of interven-

tions that enhance health in older individuals and decelerate the senescence process at the cellular level. 
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Л.Р. Соломко, А.А. Кусаинова, O.B. Булгакова 

Жасушаның қартаюы кезіндегі митохондриялық дисфункция 

Жасушаның қартаюы — жасушалық циклдің тоқтауымен және жасушаның бөліну қабілетінің 

жоғалуымен сипатталатын күрделі процесс. Қартаю көптеген молекулалық механизмдерден туындаса 

да, оның дамуында митохондриялар маңызды орын алады. Тыныс алу қабілетінің бұзылуымен және 

жасушаның энергетикалық статусының төмендеуімен көрінетін митохондриялық дисфункция жиі 

тотығу стресіне әкелетін бос оттегі радикалдарының жоғарылауымен бірге жүреді. Бұл жағдай 

жасушаның қартаюына ықпал етіп қана қоймайды, сонымен қатар оның дамуын тездетеді. Бүгінгі күні 

митохондриялық дисфункция мен жасушалық қартаю арасындағы байланысты растайтын көптеген 

зерттеулер бар, бұл митохондриялардың қартаюға қарсы терапия мен араласудың мақсаты ретіндегі 

маңыздылығын көрсетеді. Қартаю әртүрлі жасқа байланысты аурулар мен жағдайлардың, соның 

ішінде қатерлі ісік, нейродегенеративті аурулар және жүрек-тамыр ауруларының пайда болуымен 

байланысты. Бұл механизмдерді түсіну қартаюды бәсеңдетуге бағытталған стратегияларды әзірлеу 

үшін жаңа көкжиектерді ашады. Мақалада қартаю процесінде митохондриялық дисфункцияның 

дамуына ықпал ететін механизмдер жинақталған, сонымен қатар бұл бұзылыстың негізгі салдары, 

әсіресе жасушалық қартаюға әсер ету контексінде қарастырылған.  

Кілт сөздер: жасушаның қартаюы, митохондрия, тотығу стресі, митофагия, микроРНҚ, жасқа 

байланысты аурулар, қатерлі ісік, Альцгеймер ауруы, жүрек-қан тамырлары аурулары. 
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Л.Р. Соломко, А.А. Кусаинова, О.В. Булгакова 

Митохондриальная дисфункция при клеточном старении 

Клеточное старение — это сложный биологический процесс, который характеризуется остановкой 

клеточного цикла и утратой способности клеток к делению. Несмотря на участие множества молеку-

лярных механизмов, центральную роль в этом процессе играют митохондрии. Митохондриальная 

дисфункция, проявляющаяся нарушением дыхательной способности и снижением энергетического 

статуса клетки, часто сопровождается увеличением продукции свободных радикалов кислорода, что 

ведет к окислительному стрессу. Это состояние не только способствует клеточному старению, но и 

ускоряет его прогрессирование. На сегодняшний день существует множество исследований, подтвер-

ждающих связь между митохондриальной дисфункцией и клеточным старением, что подчеркивает 

важность митохондрий как мишени для антивозрастных терапий и вмешательств. Старение связано с 

возникновением различных возрастных заболеваний и состояний, включая рак, нейродегенеративные 

и сердечно-сосудистые заболевания. Понимание этих механизмов открывает новые горизонты для 

разработки стратегий, направленных на замедление старения. В данной статье обобщены механизмы, 

способствующие развитию митохондриальной дисфункции в процессе старения, а также рассмотрены 

основные последствия этого нарушения, особенно в контексте влияния на клеточное старение. 

Ключевые слова: клеточное старение, митохондрии, окислительный стресс, митофагия, микроРНК, 

возраст-ассоциированные заболевания, рак, Болезнь Альцгеймера, сердечно-сосудистые заболевания. 
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