А.Ш. Кыдырмолдина¹, Б.А. Жетписбаев², К.С. Жарыкбасова¹, К.А. Тазабаева¹

¹Казахский гуманитарно-юридический инновационный университет, Семей, Казахстан; ²Государственный медицинский университет г. Семей, Казахстан (E-mail: a kydyrmoldina@mail.ru)

Исследование влияний галеновых препаратов на иммунную систему при развитии онкопроцесса радиационного генеза

В статье описаны результаты экспериментальной работы, выполненной на 85 белых половозрелых беспородных крысах, которые были подразделены на 6 серий. Животные 4, 5 и 6 серий подверглись однократно гамма-облучению ⁶⁰Со на российском радиотерапевтическом устройстве «Агат-РМ» в дозе 6 Гр. В качестве галеновых препаратов были использованы настойки из двух композиций, отличающихся составом лекарственных растений. В состав «Композиция-1» входили следующие лекарственные растения: тимьян ползучий, береза повислая, девясил высокий в соотношении 1:2:2. Состав «Композиция-2» состоял из мяты перечной, подорожника среднего, девясила высокого, соотношение аналогичное, как и у настойки «Композиция-1». Подопытным животным 2, 3, 5 и 6 серий вводили настойки «Композиция 1 и 2» в дозе 2,5 мл/кг от массы тела, *per os* в течение 14 дней. Исследования показали, что настойка «Композиция-1» при развитии онкологического процесса радиационного происхождения оказывала иммуностимулирующее влияние на клеточное звено иммунитета, повышая функциональную активность Т-лимфоцитов. Настойка «Композиция-2» у опытных животных с онкологическим процессом оказывала иммуномодулирующее влияние на функциональное состояние клеточного звена иммунитета, поддерживая их до уровня показателей интактного организма.

Ключевые слова: острое гамма-облучение, сублетальная доза, галеновые препараты, иммунная система, онкопроцесс, лейкоциты, лимфоциты, фагоцитоз, радиация, фитотерапия.

Как следует из литературных источников, лекарственные растения представляют собой общую альтернативу в лечении рака во многих странах мира [1–3]. В настоящее время применение противораковых препаратов, основанных на лекарственных растениях, возросло с 10 до 40 % по всему земному шару. На Азиатском континенте оно достигает 50 % [4].

В настоящее время известен ряд препаратов антиопухолевого действия, полученных на основе лекарственных растений и представляющих собой химически чистые вещества растительного происхождения [5–9]. Вместе с тем большой интерес как в медицинской практике, так и в производстве пищевых продуктов функционального назначения вызывают галеновые препараты, полученные из лекарственных растений [10].

Галеновые препараты представляют собой сложный комплекс метаболитов вторичного происхождения, лечебное действие которых обусловливается не одним только действующим веществом, а всем комплексом биологически активных веществ, которые усиливают или ослабляют действие основного вещества [1–3, 10]. К ним относятся растительные экстракты, настойки, сиропы, отвары. Они весьма просты в изготовлении и экономически выгодны в производстве, чем выделение химически чистых веществ из лекарственных растений.

В последнее время внимание ученых направлено на изучение противоопухолевых свойств галеновых препаратов [9, 10]. Известно, что они оказывают комплексное воздействие на организм человека, больного раком, в отличие от извлечённых чистых химических веществ из лекарственных растений. Это связано с тем, что биологически активные вещества галеновых препаратов, обладая синергизмом действия, не только оказывают цитотоксическое действие на раковые клетки, но и повышают иммунный статус больного раком организма человека. В связи с этим при разработке эффективных способов извлечения природных компонентов, обладающих иммуномодулирующим и противоопухолевым действием, нами особое внимание уделялось составлению композиций из пяти исследуемых растений, которые относятся к фармакопейным лекарственным растениям, или растениям, зарегистрированным в государственном реестре. Именно они могут быть использованы в производстве пищевых продуктов.

Поэтому целью настоящего исследования явилось изучение влияния галеновых препаратов на иммунную систему при развитии онкопроцесса, вызванного сублетальной дозой гамма-излучения.

Материалы и методы исследования

Экспериментальная работа выполнена на 85 белых половозрелых беспородных крысах, которые были подразделены на 6 серий: 1-я серия — интактные (n=10); 2-я — интактные + «Композиция-1» (n=15); 3-я — интактные + «Композиция-2» (n=15); 4-я серия — облученные в дозе 6 Гр (n=15); 5 и 6 серии — облученные + «Композиции 1 и 2» соответственно. Животные 4, 5 и 6 серий подверглись однократно гамма-облучению ⁶⁰Со на российском радиотерапевтическом устройстве «Агат-РМ» в дозе 6 Гр.

В качестве галеновых препаратов в работе были использованы настойки из двух композиций, отличающихся составом лекарственных растений. В состав «Композиция-1» входили следующие лекарственные растения: тимьян ползучий, береза повислая, девясил высокий в соотношении 1:2:2. Состав «Композиция-2» состоял из мяты перечной, подорожника среднего, девясила высокого, соотношение аналогичное, как и у настойки «Композиция-1».

Подопытным животным 2, 3, 5 и 6 серий вводили настойки «Композиция 1 и 2» в дозе 2,5 мл/кг от массы тела, *per os* в течение 14 дней.

Для оценки иммунного статуса кровь забирали в пробирки с гепарином (25 ЕД/мл). Выделение лимфоцитов из венозной крови осуществляли по общепринятому методу [11] в градиенте плотности фиколла-верографина (1,077). Реакцию торможения миграции лейкоцитов (РТМЛ на ФГА) определяли по методу А.Г. Артемовой (1973) [12]. Состояние клеточного иммунитета оценивали по числу общего СД3+, СД4+, СД8+ и СД19+ с соответствующими моноклональными антителами, методом проточной цитометрии и митогенпродуцирующей функции в реакции торможения миграции.

Концентрацию иммунных комплексов (ЦИК) в сыворотке крови определяли по методу [13] в модификации [14].

Неспецифическое фагоцитарное звено иммунитета оценивалось по фагоцитарной активности полинуклеаров. Содержание фагоцитирующих полинуклеаров (нейтрофилов, псевдоэозинофилов) определяли по методике [15]. В качестве фагоцитирующего материала использовали латекс. Фагоцитарным показателем считали процент нейтрофилов, вступивших в фагоцитоз, от общего количества нейтрофилов. Определение показателей мононуклеарно-фагоцитарной системы (НСТ-тест) проводилось по методу Б.С. Нагоева [16].

Цифровые данные обрабатывались общепринятыми методами вариационной статистики [17].

Результаты собственных исследований

Из данных, представленных в таблице 1, видно, что при тотальном сублетальном облучении гамма-лучами в дозе 6 Гр у подопытных животных в периферической крови отмечается достоверное снижение количества лейкоцитов в 1,3 раза. Достоверно было повышение общего количества лимфоцитов, но, несмотря на лимфоцитоз, регистрировалось выраженное снижение лимфокинпродуцирующей способности лейкоцитов.

Таблица 1 Влияние ионизирующего излучения в дозе 6 Гр на иммунный статус организма

	Исследуемые группы				
Показатели	1) интактные	2) облученные +	3) облученные +	4) облученные +	
	(n = 15)	30 дней	«Композиция-1»	«Композиция-2»	
		(n = 15)	(n = 15)	(n = 15)	
Лейкоциты (мкл)	6515±145	5022±255**	8720±230* ⁰	9112±250* ⁰	
Лимфоциты в 1 мкл	2788±111	4400±150*	4510±635*	4525±220*	
РТМЛ, %	0,8±0,04	1,2±0,03*	$0,52\pm0,02*^0$	0,80±0,04*	
ЦИК, г/л	1,3±0,11	0,6±0,024*	$0,016\pm0,004*^0$	0,013±0,003* ⁰	

Примечание: * — достоверность к 1 группе (P < 0.05); ** — достоверность (P < 0.001); ⁰ — достоверно ко 2 группе (P < 0.05).

Лимфокинпродуцирующая способность лейкоцитов определялась при помощи реакции РТМЛ на $\Phi\Gamma A$, где регистрировался индекс миграции лейкоцитов в ответ на воздействие $\Phi\Gamma A$. Повышение данного показателя с 0.8 ± 0.04 до 1.2 ± 0.03 свидетельствует о снижении функциональной активности

Т-системы иммунитета. Наши данные согласуются с полученными данными С.Е. Узбековой [3], концентрация ЦИК в сыворотке крови снижается в 2,16 раза.

Таким образом, полученные данные показывают, что при действии сублетального гаммаоблучения в дозе 6 Гр наблюдается снижение как количественного, так и качественного показателей Т-системы иммунитета, что характеризует развитие иммунодефицитного состояния и это способствует развитию онкопроцесса радиационного генеза.

При действии настойки «Композиция-1» на облученный организм в периферической крови достоверно повышается количество лейкоцитов, превышая исходный и контрольный уровни. Как и в контрольной группе, количество общих лимфоцитов достоверно превышает интактный показатель. Отмечалось достоверное снижение индекса миграции лейкоцитов в реакции РТМЛ на ФГА по отношению к сравниваемым группам. Также в результате действия настойки «Композиция-1» регистрировалось низкое содержание ЦИК в сыворотке крови.

Настойка «Композиция-2» в облученном организме достоверно повышает количество лейкоцитов и лимфоцитов в периферической крови. Индекс миграции лейкоцитов в реакции РТМЛ на ФГА соответствовал контрольному уровню, снизилась концентрация ЦИК в сыворотке крови.

Таким образом, при действии настойки «Композиция-1» и «Композиция-2» в облученном организме повышаются качественные и количественные показатели в Т-системе иммунитета и по результатам можно предположить, что настойка «Композиция-1» обладает иммуностимулирующим, а настойка «Композиция-2» — иммуномодулирующим действием.

Серьезные изменения наблюдались со стороны неспецифической фагоцитарной резистентности облученного организма (табл. 2). Так, через 30 дней после тотального сублетального радиационного облучения у животных отмечается снижение неспецифического фагоцитарного звена иммунитета. Фагоцитоз $(22,4\pm2,0)$ и фагоцитарное число $(0,8\pm0,11)$ были соответственно достоверно ниже контрольных показателей $(36,2\pm2,7)$ и $(1,66\pm0,14)$. При этом показатель НСТ-теста снизился с $4,9\pm,05$ до $3,0\pm0,4$ (p < 0,05), что свидетельствует о нарушении функциональной активности лейкоцитов в периферической крови у облученных животных.

Таким образом, в облученном сублетальной дозой гамма-излучения организме происходит снижение неспецифической фагоцитарной резистентности организма.

Таблица 2 Состояние неспецифической фагоцитарной резистентности облученного организма при действии настоек «Композиция-1» и «Композиция-2»

Показатели	Исследуемые группы				
	1) интактные	2) облученные	3) облученные +	4) облученные +	
			«Композиция-1»	«Композиция-2»	
Фагоцитоз, %	36,2±2,7	22,4±2,0*	32±1,9°	29,00±0,63*°	
Ф/Ч	1,60±0,14	0,8±0,11*	2,2±0,10*°	2,40±0,11*	
НСТ-тест	4,9±0,4	3,0±0,4*	5,3±0,91°	7,00±0,62*°	

Примечание: * — достоверность к 1 группе (P < 0.05); ⁰ — достоверно ко 2 группе (P < 0.05).

После проведения курса терапии настойкой «Композиция-1» в облученном организме достоверно повышаются фагоцитоз и значения НСТ-теста до уровня интактного, тогда как фагоцитарное число существенно превышало интактный показатель. Полученные данные подтверждают повышение функциональной способности лейкоцитов.

Настойка «Композиция-2» вызывает достоверное повышение фагоцитоза в сравнении с контролем, но не достигает интактного показателя. В то же время фагоцитарное число и значения НСТ-теста возросли в 2,75 и 2,33 раза соответственно и достоверно превышали все сравниваемые уровни.

Таким образом, настойки «Композиция-1» и «Композиция-2» повышают неспецифическую фагоцитарную резистентность облученного организма за счет активации функциональной способности лейкоцитов, что наблюдалось при действии настойки «Композиция-1», и повышения функциональнометаболической активности нейтрофилов — при действии настойки «Композиция-2».

Следовательно, в выполненных нами опытах существенные изменения наблюдаются как в клеточном, так и в неспецифическом фагоцитарном звеньях иммунитета при гамма-облучении в дозе 6 Гр, что является прологом к развитию в органах и системах онкопроцесса радиационного генеза.

При изучении иммунологических показателей и неспецифической фагоцитарной резистентности организма интактных животных было установлено, что обе настойки из растительных композиций:

- не вызывают ответной аллергической реакции организма интактных (здоровых) животных;
- не оказывают существенного влияния на клеточное звено иммунитета.

Все это свидетельствует в пользу нетоксичности обеих настоек из растительных композиций.

На основании проведенных исследований действия настоек на иммунологические показатели и неспецифическую фагоцитарную резистентность у облученных сублетальной дозой радиации в дозе 6 Гр животных и развития онкопроцесса было установлено, что обе настойки из растительных композиций улучшают функции клеточного звена иммунитета через изменение содержания иммуноцитов (лейкоцитов и лимфоцитов) и повышают неспецифическую фагоцитарную резистентность организма подопытных животных, что свидетельствует о нормализации иммунного статуса подопытных животных, сниженного под действием сублетальной дозы радиации.

Вывод

Настойка «Композиция-1» при развитии онкологического процесса радиационного происхождения оказывает иммуностимулирующее влияние на клеточное звено иммунитета, повышая функциональную активность Т-лимфоцитов. Настойка «Композиция-2» у опытных животных с онкологическим процессом оказывает иммуномодулирующее влияние на функциональное состояние клеточного звена иммунитета, поддерживая их до уровня показателей интактного организма.

Статья выполнена в рамках проекта 3028/ГФ4 Разработка биотехнологических способов применения лекарственных растений противоопухолевого действия при производстве ферментированных молочных продуктов.

Список литературы

- 1 Корепанов С.В. Влияние фитотерапии на динамику иммунологических показателей у больных раком шейки матки в период облучения / С.В. Корепанов, Т.Г. Опенко // Мир науки, культуры, образования. 2011. № 5(30). С. 434—439.
- 2 Гончарова Т.С. Возможность использования лекарственного растительного сырья при лечении онкологических заболеваний / Т.С. Гончарова, С.И. Лукашук // Фармация и фармакология. — 2015. — № 1(8). — С. 11–12.
- 3 Корепанов С.В. Применение лекарственных растений с иммуномодулирующими свойствами в онкологии / С.В. Корепанов, Т.Г. Опенко // Российский биотерапевтический журнал. 2012. Т. 11, № 4. С. 15–20.
- 4 Himani Raina. Phytochemical importance of medicinal plants as potential sources of anticancer agents / Himani Raina, Garima Soni, Nupur Jauhari, Neelam Sharma, Navneeta Bharadvaja // Turkish Journal of Botany. 2014. Vol. 38. P. 1027–1035.
- 5 Eman Y. Abu-rish. Evaluation of Antiproliferative Activity of Some Traditional Anticancer Herbal Remedies from Jordan / Eman Y. Abu-rish, Violet N. Kasabri, Mohammad M. Hudaib, Sundus H. Mashalla, Loay H. AlAlawi, Khaled A. Tawaha, Mohammad K. Mohammad, Yehia S. Mohamed and Yasser K. Bustanji // Tropical Journal of Pharmaceutical Research. 2016. Vol. 15(3). P. 469–474.
- 6 Zlatina Gospodinova. In vitro antitumor potential of Bulgarian Tanacetum vulgare L. on human breast adenocarcinoma cells / Zlatina Gospodinova, Georgi Antov, Svetla Angelova, Maria Krasteva // International Journal of Pharma Sciences. 2014. Vol. 4, No. 2. P. 468–472.
- 7 Ganesh Chandra Jagetia. Determination of Antineoplastic Activity of Rohituka, Aphanamixis Polystachya (Wall) RN Parker in Hela Cells: Correlation with Clonogenicity and DNA Damage / Ganesh Chandra Jagetia, V.A. Venkatesha // International Journal of Complementary & Alternative Medicine. 2016. Vol. 3, No. 4. P. 2–11.
- 8 Sevgi Durna Dastan. Evaluation of In Vitro Anticancer Effect of Plantago major L. and Plantago lanceolata L. Leaf Extracts from Sivas / Sevgi Durna Dastan, Taner Dastan, Serap Cetinkaya, Dilek Atessahin, Tunay Karan // Cumhuriyet Univ. Sag. Bil. Enst. Derg. 2016. Vol. 1, No. 1. P. 7–14.
- 9 Jaric S. Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L. / S. Jaric, M. Mitrovic, P. Pavlovic // Evidence-based complementary and alternative medicine. 2015. Vol. 2015. Article ID 101978. 10 p.
- 10 Жарыкбасова К.С. Ингибирующее действие некоторых растительных компонентов на рост раковых клеток HCT-15 / К.С. Жарыкбасова, К.А. Тазабаева, Т.Е. Шайкен, Л.Е. Чуленбаева // Вестн. гос. ун-та им. Шакарима г. Семей. 2015. № 4(72). С. 188-192.
- 11 Гариб Ф.Ю. Способ определения субпопуляции лимфоцитов. 1111 № 2426 Руз / Ф.Ю. Гариб, В.Ю. Гариб, А.П. Ризопулу // Расмий ахборотнома. Ташкент, 1995. № 1. С. 90.
- 12 Артемова А.Г. Феномен торможения миграции лейкоцитов крови у морских свинок с гиперчувствительностью замедленного типа к чужеродному тканевому агенту / А.Г. Артемова // Бюл. эксперим. биол. и мед. 1973. Т. 76, № 10. С. 67–71.
- 13 Digeon M. Detection of circulating immune complex in human sera by simplified assays with polyethylene glucose / M. Digeon, M. Laver // J. Immunol. Methods. 1977. № 1. P. 165–183.

- 14 Гринкевич Ю.Я. Определение иммунных комплексов в крови онкологических больных / Ю.Я.Гринкевич, А.Н. Алферов // Лаб. дело. 1981. № 8. С. 493–495.
- 15 Бутаков А.А. Спектрофотометрическое определение адгезивной способности полиморфноядерных лейкоцитов периферической крови / А.А. Бутаков, В.К. Оганезов и др. // Иммунология. 1991. № 5. С. 71–72.
- 16 Нагоев Б.С., Шубич М.Г. Значение теста восстановления нитросинего тетразолия для изучения функциональной активности лейкоцитов / Б.С. Нагоев, М.Г. Шубич // Лаб. дело. 1981. —№ 4. C. 195–198.
- 17 Монцевичюте-Эрингене Е.В. Упрощенные математико-статистические методы в медицинской исследовательской работе / Е.В.Монцевичюте-Эрингене // Пат. физиол. и эксперим. терапия. 1961. № 1. С. 71–76.

А.Ш. Қыдырмолдина, Б.А. Жетпісбаев, К.С. Жарықбасова, К.А. Тазабаева

Радиациялық генезді қатерлі ісік үдерістің дамуы кезіндегі иммундық жүйеге гален препараттарының ықпалын зерттеу

Эксперименттік жұмыс 6 серияға бөлінген 85 ақ жыныстық жағынан жетілген егеуқұйрықтарға жүргізілген. 4-6-серия жануарлары 6 Гр дозада «Агат-РМ» ресейлік радиотерапевтикалық қондырғы арқылы бір рет 60 со гамма-сәулелендірілген. Мақалада гален препараттары ретінде дәрілік өсімдіктердің құрамымен ерекшеленетін екі өсімдік композициясынан тұратын тұнбалар пайдаланылған. «Композиция-1» құрамында 1:2:2 қатынасына сәйкес тасшөп жебір, қотыр қайың, биік андыз дәрілік өсімдіктері бар. «Композиция-2» құрамына да, «Композиция-1» тұнбасы қатынасындай, бұрыш жалбыз, орташа жолжелкен, биік андыз енген. 2-, 3-, 5- және 6-серия тәжірибелік жануарларына «Композиция 1 және 2» тұнбалары дене салмағына 2,5 мл/кг дозада 14 күн бойы *рег оз* берілді. Зерттеу нәтижелері бойынша, радиациядан туындайтын қатерлі ісік үдерістің дамуы кезінде «Композиция-1» тұнбасы Т-лимфоциттердің қызметтік белсенділігін жоғарылата отырып, иммунитеттің жасушалық буынына иммундық-стимулдық ықпал еткен. Онкологиялық үдеріс дамыған тәжірибелік жануарларда «Композиция-2» тұнбасы интакт ағза көрсеткіштері деңгейіне дейін иммунитеттің жасушалық буынының қызметтік күйіне иммундық модулдық түрде әсер еткен.

Кілт сөздер: жедел гамма-сәулелену, сублеталды доза, гален препараттары, иммундық жүйе, қатерлі ісік үдерісі, лейкоциттер, лимфоциттер, фагоцитоз, радиация, фитотерапия.

A.Sh. Kydyrmoldina, B.A. Zhetpisbayev, K.S. Zharykbasova, K.A. Tazabaeva

Investigation of the impact of galenic preparations on the immune system in the development of oncoprocesses of radiation genesis

The experimental work was performed on 85 white mature non-native rats, which were subdivided into 6 series. Animals 4, 5 and 6 of the series were subjected to a single gamma irradiation of ⁶⁰Co on the Russian radiotherapeutic device Agat-RM at a dose of 6 Gy. As galenic preparations, tinctures from two compositions differing in the composition of medicinal plants were used in the work. The structure of «Composition-1» included the following medicinal plants: thyme creeping, birch dangling, elecampane high in a ratio of 1:2:2, respectively. Composition «Composition-2» consisted of peppermint, medium plantain, elecampane high, a ratio similar to that of the «Composition-1» tincture. Experimental animals of 2, 3, 5 and 6 series were administered tinctures of «Composition-1» during development of body weight, *per os* for 14 days. According to the research, tincture «Composition-1» during development of oncological process of radiation origin had immunostimulating effect on the cellular link of immunity, increasing the functional activity of T-lymphocytes. Tincture «Composition-2» in experimental animals with an oncological process rendered immunomodulating effect on the functional state of the cellular immune system, supporting them to the level of indicators of the intact organism.

Keywords: Acute gamma-irradiation, sublethal dose, galenic preparations, immune system, oncoprocess, leukocytes, lymphocytes, phagocytosis, radiation, phytotherapy.

References

1 Korepanov, S.V., & Openko, T.G. (2011). Vliianie fitoterapii na dinamiku immunolohicheskikh pokazatelei u bolnykh rakom sheiki matki v period oblucheniia [Influence of phytotherapy on the dynamics of immunological indices in patients with cervical cancer in the period of irradiation]. *Mir nauki, kul'tury, obrazovaniia* — *The world of science, culture, education, 5(30)*, 434–439. [in Russian].

- 2 Goncharova, T.S., & Lukashuk, S.I. (2015). Vozmozhnost ispolzovaniia lekarstvennoho rastitelnoho syria pri lechenii onkolohicheskikh zabolevanii [The possibility of using medicinal plant raw materials in the treatment of oncological diseases]. Farmatsiia i farmakolohiia Pharmacy and Pharmacology, 1(8), 11–12. [in Russian].
- 3 Korepanov, S.V., & Openko, T.G. (2012). Primenenie lekarstvennykh rastenii s immunomoduliruiushchimi svoistvami v onkolohii [Application of medicinal plants with immunomodulating properties in oncology]. *Rossiiskii bioterapevticheskii zhurnal*—*Russian biotherapeutic journal, 11, 4,* 15–20. [in Russian].
- 4 Himani Raina, Garima Soni, Nupur Jauhari, Neelam Sharma, Navneeta Bharadvaja. (2014). Phytochemical importance of medicinal plants as potential sources of anticancer agents. *Turkish Journal of Botany*, 38, 1027–1035.
- 5 Eman Y. Abu-rish, Violet N. Kasabri, Mohammad M. Hudaib, Sundus H. Mashalla, Loay H. AlAlawi, & Khaled A. Tawaha, et al. (2016). Evaluation of Antiproliferative Activity of Some Traditional Anticancer Herbal Remedies from Jordan. *Tropical Journal of Pharmaceutical Research*, 15(3), 469–474.
- 6 Zlatina Gospodinova, Georgi Antov, Svetla Angelova, & Maria Krasteva. (2014). In vitro antitumor potential of Bulgarian Tanacetum vulgare L. on human breast adenocarcinoma cells. *International Journal of Pharma Sciences*, 4, 2, 468–472.
- 7 Ganesh Chandra Jagetia, & Venkatesha V. A. (2016). Determination of Antineoplastic Activity of Rohituka, Aphanamixis Polystachia (Wall) RN Parker in Hela Cells: Correlation with Clonogenicity and DNA Damage. *International Journal of Complementary & Alternative Medicine*, 3, 4, 2–11.
- 8 Sevgi Durna Dastan, Taner Dastan, Serap Cetinkava, Dilek Atessahin, & Tunay Karan. (2016). Evaluation of In Vitro Anticancer Effect of Plantago major L. and Plantago lanceolata L. Leaf Extracts from Sivas. *Cumhuriyet Univ. Sag. Bil. Enst. Derg.*, 1, 1, 7–14
- 9 Jaric, S., Mitrovic, M., & Pavlovic, P. (2015). Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L.Y. Evidence-based complementary and alternative medicine, 2015, Article ID 101978, 10.
- 10 Zharykbasova, K.S., Tazabayeva, K.A., Shayken, T.Ye., & Chulenbayeva, L.Ye. (2015). Inhibitruiushchee deistvie nekotorykh rastitelnykh komponentov na rost rakovykh kletok HCT-15 [Inhibitory effect of some plant components on the growth of HCT-15 cancer cells]. *Vestnik hosudarstvennoho universiteta imeni Shakarima horoda Semey Bulletin of the Shakarim State University of Semey*, 4(72), 188–192. [in Russian].
- 11 Garib, F.Yu., Garib, V.Yu., & Rizopulu, A.P. (1995). Sposob opredeleniia subpopuliatsii limfotsitov. [Method for the determination of a subpopulation of lymphocytes]. 1111, 2426 Ruz. Rasmiy akhborotnoma Rumiy ahborotnoma. Tashkent, 1, 90. [in Russian].
- 12 Artemova, A.G. (1973). Fenomen tormozheniia mihratsii leikotsitov krovi u morskikh svinok s hiperchuvstvitelnostiu zamedlennoho tipa k chuzherodnomu tkanevomu ahentu. [The phenomenon of inhibition of migration of blood leukocytes in guinea pigs with delayed hypersensitivity to a foreign tissue agent]. Biulleten eksperimentalnoi biolohii i meditsiny. Bul. experiment. biol. and med., 76, 10, 67–71 [in Russian].
- 13 Digeon, M., & Laver, M. (1977). Detection of circulating immune complex in human sera by simplified assays with polyethylene glucos. *J. Immunol. Methods, 1,* 165–183.
- 14 Grinkevich, Yu.Ya., & Alferov, A.N. (1981). Opredelenie immunnykh kompleksov v krovi onkolohicheskikh bolnykh. [Determination of immune complexes in the blood of cancer patients]. *Laboratornoe delo Laboratory work, 8,* 493–495 [in Russian].
- 15 Butakov, A.A., Oganezov, V.K., et al. (1991) Spektrofotometricheskoe opredelenie adhezivnoi sposobnosti polimorfnoiadernykh leikotsitov perifericheskoi krovi. [Spectrophotometric determination of the adhesive ability of polymorphonuclear leukocytes of peripheral blood]. *Immunolohiia Immunology*, 5, 71–72 [in Russian].
- 16 Nagovev, B.S., & Shubich, M.G. (1981). Znachenie testa vosstanovleniia nitrosineho tetrazoliia dlia izucheniia funktsionalnoi aktivnosti leikotsitov [Value of the test for the reduction of nitrosine tetrazolium for the study of the functional activity of leukocytes]. *Laboratornoye delo Laboratory work, 4*, 195–198. [in Russian].
- 17 Montsevichyute-Eringene, Ye.V. (1961). Uproshchennye matematiko-statisticheskie metody v meditsinskoi issledovatelskoi rabote [Simplified mathematical-statistical methods in medical research work]. *Patolohicheskaia fiziolohiia i eksperimentalnaia terapiia*—*Pat. fiziol. and experim. therapy, 1*, 71–76 [in Russian].